15 research outputs found

    Diversity and Source of Airborne Microbial Communities at Differential Polluted Sites of Rome

    No full text
    Biogenic fraction of airborne PM10 which includes bacteria, viruses, fungi and pollens, has been proposed as one of the potential causes of the PM10 toxicity. The present study aimed to provide a comprehensive understanding of the microbial community variations associated to PM10, and their main local sources in the surrounding environment in three urban sites of Rome, characterized by differential pollution rate: green area, residential area and polluted area close to the traffic roads. We combined high-throughput amplicon sequencing of the bacterial 16S rRNA gene and the fungal internal transcribed spacer (ITS) region, with detailed chemical analysis of particulate matter sampled from air, paved road surfaces and leaf surfaces of Quercus ilex. Our results demonstrated that bacterial and fungal airborne communities were characterized by the highest alpha-diversity and grouped separately from epiphytic and road dust communities. The reconstruction of source-sink relationships revealed that the resuspension/deposition of road dust from traffic might contribute to the maximum magnitude of microbial exchanges. The relative abundance of extremotolerant microbes was found to be enhanced in epiphytic communities and was associated to a progressively increase of pollution levels as well as opportunistic human pathogenicity in fungal communities

    Consequences of Grazing Cessation for Soil Environment and Vegetation in a Subalpine Grassland Ecosystem

    No full text
    Areas covered by seminatural grasslands have been in constant decline for decades in Europe. This trend is particularly strong for mountain territories, where such traditional agricultural practices as cattle grazing are no longer economically feasible. This study was conducted in the subalpine pasture of Cinte Tesino (TN, Italy), where local farmers have applied the following different management strategies: shorter and longer grazing durations during the season and a complete abandonment for the last 15 years. We aimed to study how these different management strategies impact the functioning and diversity of vegetation and the chemical and biological characteristics of the soil. Species richness was higher in plots subjected to longer grazing with a prevalence of D. caespitosa in terms of biomass share. A decline in species richness in abandoned plots was accompanied by an increase in the share of other graminoids in collected biomass. A concomitant increase in leaf N concentration and light availability in grazed plots resulted in higher photosynthetic efficiency in some species, as revealed by the δ13C of plant tissues. Soils under grazing were characterised by a higher concentration of total and extractable N, almost doubled microbial biomass C and increased extracellular enzymes activity, evidencing nutrient cycling mobilization. While the microbial pool was characterised by lower mineralization rates, C was lost from the soil with 15 years of abandonment. The longer grazing season demonstrated to be the most beneficial, promoting species richness, C accumulation and better soil microbial functioning. A change in soil pH from strongly acidic to moderately acidic with longer grazing is likely one of the important factors adding to the success in the functioning of primary producers and decomposers in this site

    Seawater carbonate chemistry and carbon and nitrogen allocation strategy in Posidonia oceanica

    No full text
    Rising atmospheric CO2 causes ocean acidification that represents one of the major ecological threats for marine biota. We tested the hypothesis that long-term exposure to increased CO2 level and acidification in a natural CO2 vent system alters carbon (C) and nitrogen (N) metabolism in Posidonia oceanica L. (Delile), affecting its resilience, or capability to restore the physiological homeostasis, and the nutritional quality of organic matter available for grazers. Seawater acidification decreased the C to N ratio in P. oceanica tissues and increased grazing rate, shoot density, leaf proteins and asparagine accumulation in rhizomes, while the maximum photochemical efficiency of photosystem II was unaffected. The 13C-dilution in both structural and non-structural C metabolites in the acidified site indicated quali-quantitative changes of C source and/or increased isotopic fractionation during C uptake and carboxylation associated with the higher CO2 level. The decreased C:N ratio in the acidified site suggests an increased N availability, leading to a greater storage of 15N-enriched compounds in rhizomes. The amount of the more dynamic C storage form, sucrose, decreased in rhizomes of the acidified site in response to the enhanced energy demand due to higher shoot recruitment and N compound synthesis, without affecting starch reserves. The ability to modulate the balance between stable and dynamic C reserves could represent a key ecophysiological mechanism for P. oceanica resilience under environmental perturbation. Finally, alteration in C and N dynamics promoted a positive contribution of this seagrass to the local food web

    Secondary soil salinization in urban lawns: Microbial functioning, vegetation state, and implications for carbon balance

    No full text
    Deicing agents cause soil salinization and degradation in urban areas. We assessed the capacity of urban lawns to maintain carbon sequestration and nutrient cycling with increasing soil salinity. The sensitivity to soil salinity of the main ecosystem players: plants and microorganisms were assessed considering their complex interactions between each other and environment. The effects of low and moderate soil salinization by common deicing agent (NaCl) were evaluated in mesocosms planted with two urban lawns: Lolium perenne and mixture of grasses. Mesocosm-, plant-, and soil-level gas exchange were assessed on a short-term (days) and long-term (months) scales. Microbial response was characterized by analyzing the microbial properties and activities of nine enzymes. Carbon balance remained independent on the salinity due to cancelling effect of lowered gross primary production (GPP, −20%), decreased C input by plants into the soil (−40% for mixture) balanced by slower microbial decomposition of organic matter (−20%) and so, lower soil respiration (−35%). GPP declined as a long-term response by a combination of stomatal constraint on photosynthesis with leaf respiration increase. Toxic effects of salinization on soil respiration were observed only for temperatures above 15°C. Microbial community with high C:N ratio (common for fungi) was the most sensitive to salinization. The death of microbial biomass (−31% for Lolium) and cell lysis increased soil enzyme activities (+38% for Lolium). We conclude that C balance of urban lawns remain homeostatic at secondary salinization. Temperature effects and plant-microbial interactions will determine C and nutrients cycling under salinity stress in urban lawns.s

    Microscopic fungi in big cities : Biodiversity, source, and relation to pollution by potentially toxic metals

    No full text
    For the first time, a mycological analysis of outdoor urban environment (air, leaves, sealed surfaces) was carried in the cities of subarctic (Murmansk) and temperate (Moscow) climatic zones. The chemical composition of dust deposited on leaves of dominant tree species was taken as an indicator of the air quality. Assessment of the complex impact of factors (climate zone, type of substrate, anthropogenic load) on the quantitative and qualitative parameters of mycobiome was performed. Compared to Moscow, Murmansk was characterized by an increased number and concentrations of pollutants in the deposited dust. The number of culturable airborne fungi in Murmansk was substantially lower than in Moscow. Half of the species belonged to the opportunistic in both cities. Most dangerous opportunistic fungi were absent in the air of recreational zones but present on leaves surface and in road dust in all assessed zones of the cities. Dust chemical composition affected the diversity of fungi species. While the relationship of biological parameters with concentration of potentially toxic metals was generally negative, Cd increased the fraction of opportunistic fungi in road dust. The study revealed an importance of substrate in determining the sensitivity of outdoor mycobiome to pollution and highlighted its biological characteristics sensitive to climate

    Diversity of Microbial Communities, PAHs, and Metals in Road and Leaf Dust of Functional Zones of Moscow and Murmansk

    No full text
    The impact of geographical factors, functional zoning, and biotope type on the diversity of microbial communities and chemical components in the dust of urban ecosystems was studied. Comprehensive analyses of bacterial and fungal communities, polycyclic aromatic hydrocarbons (PAHs), and metals in road and leaf dust in three urban zones of Murmansk and Moscow with contrasting anthropogenic load were conducted. We found that the structure of bacterial communities affected the functional zoning of the city, biotope type, and geographical components. Fungal communities were instead impacted only by biotope type. Our findings revealed that the structure of fungal communities was mostly impacted by PAHs whereas bacterial communities were sensitive to metals. Bacteria of the genus Sphingomonas in road and leaf dust as indicators of the ecological state of the urban ecosystems were proposed
    corecore