47 research outputs found

    Increased circulating levels of vitamin D binding protein in MS patients

    Get PDF
    Vitamin D (vitD) low status is currently considered a main environmental factor in multiple sclerosis (MS) etiology and pathogenesis. VitD and its metabolites are highly hydrophobic and circulate mostly bound to the vitamin D binding protein (DBP) and with lower affinity to albumin, while less than 1\% are in a free form. The aim of this study was to investigate whether the circulating levels of either of the two vitD plasma carriers and/or their relationship are altered in MS. We measured DBP and albumin plasma levels in 28 MS patients and 24 healthy controls. MS patients were found to have higher DBP levels than healthy subjects. Concomitant interferon beta therapy did not influence DBP concentration, and the difference with the control group was significant in both females and males. No significant correlation between DBP and albumin levels was observed either in healthy controls or in patients. These observations suggest the involvement of DBP in the patho-physiology of MS

    APOBEC3G/3A Expression in Human Immunodeficiency Virus Type 1-Infected Individuals Following Initiation of Antiretroviral Therapy Containing Cenicriviroc or Efavirenz

    Get PDF
    Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) family members are cytidine deaminases that play crucial roles in innate responses to retrovirus infection. The mechanisms by which some of these enzymes restrict human immunodeficiency virus type 1 (HIV-1) replication have been extensively investigated in vitro. However, little is known regarding how APOBEC3 proteins affect the pathogenesis of HIV-1 infection in vivo and how antiretroviral therapy influences their expression. In this work, a longitudinal analysis was performed to evaluate APOBEC3G/3A expression in peripheral blood mononuclear cells of antiretroviral-naive HIV-1-infected individuals treated with cenicriviroc (CVC) or efavirenz (EFV) at baseline and 4, 12, 24, and 48 weeks post-treatment follow-up. While APOBEC3G expression was unaffected by therapy, APOBEC3A levels increased in CVC but not EFV arm at week 48 of treatment. APOBEC3G expression correlated directly with CD4+ cell count and CD4+/CD8+ cell ratio, whereas APOBEC3A levels inversely correlated with plasma soluble CD14. These findings suggest that higher APOBEC3G/3A levels may be associated with protective effects against HIV-1 disease progression and chronic inflammation and warrant further studies

    Bovine lactoferrin-induced CCL1 expression involves distinct receptors in monocyte-derived dendritic cells and their monocyte precursors

    Get PDF
    Lactoferrin (LF) exhibits a wide range of immunomodulatory activities including modulation of cytokine and chemokine secretion. In this study, we demonstrate that bovine LF (bLF) up-modulates, in a concentration- and time-dependent manner, CCL1 secretion in monocytes (Mo) at the early stage of differentiation toward dendritic cells (DCs), and in fully differentiated immature Mo-derived DCs (MoDCs). In both cell types, up-modulation of CCL1 secretion is an early event following bLF-mediated enhanced accumulation of CCL1 transcripts. Notably, bLF-mediated up-regulation of CCL1 involves the engagement of distinct surface receptors in MoDCs and their Mo precursors. We show that bLF-mediated engagement of CD36 contributes to CCL1 induction in differentiating Mo. Conversely, toll-like receptor (TLR)2 blocking markedly reduces bLF-induced CCL1 production in MoDCs. These findings add further evidence for cell-specific differential responses elicited by bLF through the engagement of distinct TLRs and surface receptors. Furthermore, the different responses observed at early and late stages of Mo differentiation towards DCs may be relevant in mediating bLF effects in specific body districts, where these cell types may be differently represented in physiopathological conditions

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    1,25(OH)<sub>2</sub>D3 Differently Modulates the Secretory Activity of IFN-DC and IL4-DC: A Study in Cells from Healthy Donors and MS Patients

    No full text
    Immune mechanisms play an essential role in driving multiple sclerosis (MS) and altered trafficking and/or activation of dendritic cells (DC) were observed in the central nervous system and cerebrospinal fluid of MS patients. Interferon β (IFNβ) has been used as a first-line therapy in MS for almost three decades and vitamin D deficiency is a recognized environmental risk factor for MS. Both IFNβ and vitamin D modulate DC functions. Here, we studied the response to 1,25-dihydoxyvitamin D3 (1,25(OH)2D3) of DC obtained with IFNβ/GM-CSF (IFN-DC) compared to classically derived IL4-DC, in three donor groups: MS patients free of therapy, MS patients undergoing IFNβ therapy, and healthy donors. Except for a decreased CCL2 secretion by IL4-DC from the MS group, no major defects were observed in the 1,25(OH)2D3 response of either IFN-DC or IL4-DC from MS donors compared to healthy donors. However, the two cell models strongly differed for vitamin D receptor level of expression as well as for basal and 1,25(OH)2D3-induced cytokine/chemokine secretion. 1,25(OH)2D3 up-modulated IL6, its soluble receptor sIL6R, and CCL5 in IL4-DC, and down-modulated IL10 in IFN-DC. IFN-DC, but not IL4-DC, constitutively secreted high levels of IL8 and of matrix-metalloproteinase-9, both down-modulated by 1,25(OH)2D3. DC may contribute to MS pathogenesis, but also provide an avenue for therapeutic intervention. 1,25(OH)2D3-induced tolerogenic DC are in clinical trial for MS. We show that the protocol of in vitro DC differentiation qualitatively and quantitatively affects secretion of cytokines and chemokines deeply involved in MS pathogenesis

    Human Immunodeficiency Virus Type 1 gp120 and Other Activation Stimuli Are Highly Effective in Triggering Alpha Interferon and CC Chemokine Production in Circulating Plasmacytoid but Not Myeloid Dendritic Cells

    No full text
    Exposure to aldrithiol-2-inactivated human immunodeficiency virus type 1 or gp120, but not gp41, triggered alpha interferon (IFN-α), CC chemokine ligand 2 (CCL2), CCL3, and CCL4 production in human plasmacytoid dendritic cells (DCs) but not in myeloid DCs (M-DCs) or monocyte-derived DCs from the same donors. The nonresponsiveness of M-DCs for IFN-α/β production was a general feature specific to these cells, as they also failed to produce it in response to inactivated influenza virus, poly(I-C), lipopolysaccharide, Staphylococcus aureus Cowans I, or CD40L. The different capacities of circulating DC subsets to produce immune mediators in response to most stimuli argue for a different role for these cells in the regulation of innate immunity to pathogens
    corecore