26 research outputs found

    Tripeptide analysis of protein structures

    Get PDF
    BACKGROUND: An efficient building block for protein structure prediction can be tripeptides. 8000 different tripeptides from a dataset of 1220 high resolution (≤ 2.0°A) structures from the Protein Data Bank (PDB) have been looked at, to determine which are structurally rigid and non-rigid. This data has been statistically analyzed, discussed and summarized. The entire data can be utilized for the building of protein structures. RESULTS: Tripeptides have been classified into three categories: rigid, non-rigid and intermediate, based on the relative structural rigidity between C(α )and C(β )atoms in a tripeptide. We found that 18% of the tripeptides in the dataset can be classified as rigid, 4% as non-rigid and 78% as intermediate. Many rigid tripeptides are made of hydrophobic residues, however, there are tripeptides with polar side chains forming rigid structures. The bulk of the tripeptides fall in the intermediate class while very small numbers actually fall in the non-rigid class. Structurally all rigid tripeptides essentially form two structural classes while the intermediate and non-rigid tripeptides fall into one structural class. This notion of rigidity and non-rigidity is designed to capture side chain interactions but not secondary structures. CONCLUSIONS: Rigid tripeptides have no correlation with the secondary structures in proteins and hence this work is complementary to such studies. Tripeptide data may be used to predict plausible structures for oligopeptides and for denovo protein design

    Functionally specified protein signatures distinctive for each of the different blue copper proteins

    Get PDF
    BACKGROUND: Proteins having similar functions from different sources can be identified by the occurrence in their sequences, a conserved cluster of amino acids referred to as pattern, motif, signature or fingerprint. The wide usage of protein sequence analysis in par with the growth of databases signifies the importance of using patterns or signatures to retrieve out related sequences. Blue copper proteins are found in the electron transport chain of prokaryotes and eukaryotes. The signatures already existing in the databases like the type 1 copper blue, multiple copper oxidase, cyt b/b6, photosystem 1 psaA&B, psaG&K, and reiske iron sulphur protein are not specified signatures for blue copper proteins as the name itself suggests. Most profile and motif databases strive to classify protein sequences into a broad spectrum of protein families. This work describes the signatures designed based on the copper metal binding motifs in blue copper proteins. The common feature in all blue copper proteins is a trigonal planar arrangement of two nitrogen ligands [each from histidine] and one sulphur containing thiolate ligand [from cysteine], with strong interactions between the copper center and these ligands. RESULTS: Sequences that share such conserved motifs are crucial to the structure or function of the protein and this could provide a signature of family membership. The blue copper proteins chosen for the study were plantacyanin, plastocyanin, cucumber basic protein, stellacyanin, dicyanin, umecyanin, uclacyanin, cusacyanin, rusticyanin, sulfocyanin, halocyanin, azurin, pseudoazurin, amicyanin and nitrite reductase which were identified in both eukaryotes and prokaryotes. ClustalW analysis of the protein sequences of each of the blue copper proteins was the basis for designing protein signatures or peptides. The protein signatures and peptides identified in this study were designed involving the active site region involving the amino acids bound to the copper atom. It was highly specific for each kind of blue copper protein and the false picks were minimized. The set of signatures designed specifically for the BCP's was entirely different from the existing broad spectrum signatures as mentioned in the background section. CONCLUSIONS: These signatures can be very useful for the annotation of uncharacterized proteins and highly specific to retrieve blue copper protein sequences of interest from the non redundant databases containing a large deposition of protein sequences

    A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil

    Get PDF
    BACKGROUND: Prodigiosin produced by Serratia marcescens is a promising drug owing to its reported characteristics of having antifungal, immunosuppressive and antiproliferative activity. From an industrial point of view the necessity to obtain a suitable medium to simultaneously enhance the growth of Serratia marcescens and the pigment production was the aim of this work. The usage of individual fatty acid as substrate in industries would be cost-effective in the long run and this paved the way for us to try the effect of different fatty acid-containing seeds and oils of peanut, sesame and coconut as source of substrate. RESULTS: The addition of sugars only showed slight enhancement of prodigiosin production in nutrient broth but not in fatty acid containing seed medium. The powdered peanut broth had supported better growth of Serratia marcescens and higher yield of prodigiosin when compared with the existing nutrient broth and peptone glycerol broth. A block in prodigiosin production was seen above 30°C in nutrient broth, but the fatty acid seed medium used by us supported prodigiosin production upto 42°C though the yields were lower than what was obtained at 28°C. From the results, the fatty acid form of carbon source has a role to play in enhanced cell growth and prodigiosin production. CONCLUSION: We conclude by reporting that the powdered and sieved peanut seed of different quality grades were consistent in yielding a fourty fold increase in prodigiosin production over the existing media. A literature survey on the composition of the different media components in nutrient broth, peptone glycerol broth and the fatty acid containing seeds and oils enabled us to propose that the saturated form of fatty acid has a role to play in enhanced cell growth and prodigiosin production. This work has also enabled us to report that the temperature related block of prodigiosin biosynthesis varies with different media and the powdered peanut broth supports prodigiosin production at higher temperatures. The medium suggested in this work is best suitable from an industrial point of view in being economically feasible, in terms of the higher prodigiosin yield and the extraction of prodigiosin described in this paper is simple with minimal wastage

    Promoter addresses: revelations from oligonucleotide profiling applied to the Escherichia coli genome

    Get PDF
    BACKGROUND: Transcription is the first step in cellular information processing. It is regulated by cis-acting elements such as promoters and operators in the DNA, and trans-acting elements such as transcription factors and sigma factors. Identification of cis-acting regulatory elements on a genomic scale requires computational analysis. RESULTS: We have used oligonucleotide profiling to predict regulatory regions in a bacterial genome. The method has been applied to the Escherichia coli K12 genome and the results analyzed. The information content of the putative regulatory oligonucleotides so predicted is validated through intra-genomic analyses, correlations with experimental data and inter-genome comparisons. Based on the results we have proposed a model for the bacterial promoter. The results show that the method is capable of identifying, in the E.coli genome, cis-acting elements such as TATAAT (sigma70 binding site), CCCTAT (1 base relative of sigma32 binding site), CTATNN (LexA binding site), AGGA-containing hexanucleotides (Shine Dalgarno consensus) and CTAG-containing hexanucleotides (core binding sites for Trp and Met repressors). CONCLUSION: The method adopted is simple yet effective in predicting upstream regulatory elements in bacteria. It does not need any prior experimental data except the sequence itself. This method should be applicable to most known genomes. Profiling, as applied to the E.coli genome, picks up known cis-acting and regulatory elements. Based on the profile results, we propose a model for the bacterial promoter that is extensible even to eukaryotes. The model is that the core promoter lies within a plateau of bent AT-rich DNA. This bent DNA acts as a homing segment for the sigma factor to recognize the promoter. The model thus suggests an important role for local landscapes in prokaryotic and eukaryotic gene regulation

    Identification of scaffold/Matrix Attachment (S/MAR) like DNA element from the gastrointestinal protozoan parasite Giardia lamblia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromatin in the nucleus of all eukaryotes is organized into a system of loops and domains. These loops remain fastened at their bases to the fundamental framework of the nucleus, the matrix or the scaffold. The DNA sequences which anchor the bases of the chromatin loops to the matrix are known as Scaffold/Matrix Attachment Regions or S/MARs. Though S/MARs have been studied in yeast and higher eukaryotes and they have been found to be associated with gene organization and regulation of gene expression, they have not been reported in protists like <it>Giardia</it>. Several tools have been discovered and formulated to predict S/MARs from a genome of a higher eukaryote which take into account a number of features. However, the lack of a definitive consensus sequence in S/MARs and the randomness of the protozoan genome in general, make it a challenge to predict and identify such sequences from protists.</p> <p>Results</p> <p>Here, we have analysed the <it>Giardia </it>genome for the probable S/MARs predicted by the available computational tools; and then shown these sequences to be physically associated with the nuclear matrix. Our study also reflects that while no single computational tool is competent to predict such complex elements from protist genomes, a combination of tools followed by experimental verification is the only way to confirm the presence of these elements from these organisms.</p> <p>Conclusion</p> <p>This is the first report of S/MAR elements from the protozoan parasite <it>Giardia lamblia</it>. This initial work is expected to lay a framework for future studies relating to genome organization as well as gene regulatory elements in this parasite.</p

    Evidence of a Double-Lid Movement in Pseudomonas aeruginosa Lipase: Insights from Molecular Dynamics Simulations

    Get PDF
    Pseudomonas aeruginosa lipase is a 29-kDa protein that, following the determination of its crystal structure, was postulated to have a lid that stretched between residues 125 and 148. In this paper, using molecular dynamics simulations, we propose that there exists, in addition to the above-mentioned lid, a novel second lid in this lipase. We further show that the second lid, covering residues 210–222, acts as a triggering lid for the movement of the first. We also investigate the role of hydrophobicity in the movement of the lids and show that two residues, Phe214 and Ala217, play important roles in lid movement. To our knowledge, this is the first time that a double-lid movement of the type described in our manuscript has been presented to the scientific community. This work also elucidates the interplay of hydrophobic interactions in the dynamics, and hence the function, of an enzyme

    Use of Tetra-ammonium Tetrakis(4-Sulphonato)Phenyl Porphyrin for Pseudomonas and Bacillus Cell Imaging

    Get PDF
    The use of tetraammonium tetrakis(4-sulphonato)phenyl porphyrin (TPPS), a water-soluble anionic compound, as a stain to analyse bacterial cells using fluorescent microscopy was investigated. TPPS was effectively used to analyse two different bacteria: Pseudomonas aeruginosa and Bacillus cereus. The variation in brightness with varying concentrations of TPPS was studied. The patterns of variations for these bacteria were found to be the same, but with consistently higher brightness for Bacillus cereus
    corecore