159 research outputs found
Leaf reflectance-nitrogen-chlorophyll relations among three south Texas woody rangeland plant species
Annual variations in the nitrogen-chlorophyll leaf reflectance of hackberry, honey mesquite and live oak in south Texas, were compared. In spring, leaf reflectance at the 0.55 m wavelength and nitrogen (N) concentration was high but leaf chlorophyll (chl) concentrations were low. In summer, leaf reflectance and N-concentration were low but lead chl concentrations were high. Linear correlations for both spring and summer of leaf reflectance with N and chl concentration or deviations from linear regression were not statistically significant
Reflectance of litter accumulation levels at five wavelengths within the 0.5- to 2.5 micron waveband
Reflectance was measured for 1-m2 range grass plots with two canopy treatments (standing and clipped) and four levels of litter accumulation and for grain sorghum with two canopy treatments. Reflectance was significantly higher at the 0.65- to 1.65-, and 2.20-micrometer. Wavelengths for both grass and grain sorghum canopies when the canopies were clipped and the resulting litter was removed. The natural accumulation of litter under the grass canopy did not significantly affect reflectance. The 1.65- and 2.20-micrometer wavelength reflectances of the live grass and the intact litter were 21.8% and 16.2%, respectively, and those of grain sorghum were 21.8% and 16.5%, respectively
Comparison of LANDSAT-2 and field spectrometer reflectance signatures of south Texas rangeland plant communities
The accuracy was assessed for an atmospheric correction method that depends on clear water bodies to infer solar and atmospheric parameters for radiative transfer equations by measuring the reflectance signature of four prominent south Texas rangeland plants with the LANDSAT satellite multispectral scanner (MSS) and a ground based spectroradiometer. The rangeland plant reflectances produced by the two sensors were correlated with no significant deviation of the slope from unity or of the intercept from zero. These results indicated that the atmospheric correction produced LANDSAT MSS estimates of rangeland plant reflectances that are as accurate as the ground based spectroradiometer
Soil, Water, and Vegetation Conditions in South Texas
The author has identified the following significant results. Reflectance differences between the dead leaves of six crops (corn, cotton, sorghum, sugar cane, citrus, and avocado) and the respective bare soils where the dead leaves were lying on the ground were determined from laboratory spectrophotometric measurements over the 0.5- to 2.5 micron wavelength interval. The largest differences were in the near infrared waveband 0.75- to 1.35 microns. Leaf area index was predicted from plant height, percent ground cover, and plant population for irrigated and nonirrigated grain sorghum fields for the 1975 growing season
Vegetation density as deduced from ERTS-1 MSS response
Reflectance from vegetation increases with increasing vegetation density in the 0.75- to 1.35 micron wavelength interval. Therefore, ERTS-1 bands 6 (0.7 to 0.8 micron) and 7 (0.8 to 1.1 micron) contain information that should relate to the probable yield of crops and the animal carrying capacity of rangeland. The results of an experiment designed specifically to test the relations among leaf area index (LAI), plant population, plant cover and plant height, and the ERTS-1 MSS responses for 3 corn, 10 sorghum, and 10 cotton fields are given. Plant population was as useful as LAI for characterizing the sorghum and corn fields, and plant height was as good as LAI for characterizing cotton fields. These findings generally support the utility of ERTS-1 data for explaining variability in green biomass, harvestable forage and other indicators of productivity
Reflectance of vegetation, soil, and water
The author has identified the following significant results. Iron deficient and normal grain sorghum plants were sufficiently different spectrally in ERTS-1 band 5 CCT data to detect chlorotic sorghum areas 2.8 acres (1.1 hectares) or larger in size in computer printouts of the MSS data. The ratio of band 5 to band 7 or band 7 minus band 5 relates to vegetation ground cover conditions and helps to select training samples representative of differing vegetation maturity or vigor classes and to estimate ground cover or green vegetation density in the absence of ground information. The four plant parameters; leaf area index, plant population, plant cover, and plant height explained 87 to 93% of the variability in band 6 digital counts and from 59 to 90% of the variation in bands 4 and 5. A ground area 2244 acres in size was classified on a pixel by pixel basis using simultaneously acquired aircraft support and ERTS-1 data. Overall recognition for vegetables, immature crops and mixed shrubs, and bare soil categories was 64.5% for aircraft and 59.6% for spacecraft data, respectively. Overall recognition results on a per field basis were 61.8% for aircraft and 62.8% for ERTS-1 data
Soil, water, and vegetation conditions in south Texas
The author has identified the following significant results. Software development for a computer-aided crop and soil survey system is nearing completion. Computer-aided variety classification accuracies using LANDSAT-1 MSS data for a 600 hectare citrus farm were 83% for Redblush grapefruit and 91% for oranges. These accuracies indicate that there is good potential for computer-aided inventories of grapefruit and orange citrus orchards with LANDSAT-type MSS data. Mean digital values of clouds differed statistically from those for crop, soil, and water entities, and those for cloud shadows were enough lower than sunlit crop and soil to be distinguishable. The standard errors of estimate for the calibration of computer compatible tape coordinate system (pixel and record) to earth coordinate system (longitude and latitude) for 6 LANDSAT scenes ranged from 0.72 to 1.50 pixels and from 0.58 to 1.75 records
Optical parameters of leaves of seven weed species
The absorption coefficient (k), infinite reflectance (R), and scattering coefficient (s) were tabulated for five wavelengths and analyzed for statistical differences for seven weed species. The wavelengths were: 0.55-micrometer, 0.65-micrometers, 0.85-micrometer, 1.65-micrometers, and 2.20-micrometer. The R of common lambsquarters (Chenopodium album L.), Johnsongrass (Sorghum halepense (L.) Pers.), and annual sowthistle (Sonchus oleraceus L.) leaves at the 0.85-micrometer wavelength were significantly (p=0.05) higher than for sunflower (Heliantus annus L.), ragweed parthenium (Parthenium hysterophorus L.), or London rocket (Sisymbrium irio L.). Annual sowthistle had the largest k value, and Plamer amaranth (Amaranthus palmer S. Wats.) had the smallest k value at the 0.65 approximately chlorophyll absorption wavelength. In general, john-songress, ragweed parthenium, or London rocket had the largest s values among the five wavelengths, wereas annual sowthistle and plamar amaranth were usually lowest
Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions
There are no author-identified significant results in this report
Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions
There are no author-identified significant results in this report
- …