25 research outputs found

    Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale.

    Get PDF
    We present a novel optical transient absorption and reflection microscope based on a diffraction-limited pump pulse in combination with a wide-field probe pulse, for the spatiotemporal investigation of ultrafast population transport in thin films. The microscope achieves a temporal resolution down to 12 fs and simultaneously provides sub-10 nm spatial accuracy. We demonstrate the capabilities of the microscope by revealing an ultrafast excited-state exciton population transport of up to 32 nm in a thin film of pentacene and by tracking the carrier motion in p-doped silicon. The use of few-cycle optical excitation pulses enables impulsive stimulated Raman microspectroscopy, which is used for in situ verification of the chemical identity in the 100-2000 cm-1 spectral window. Our methodology bridges the gap between optical microscopy and spectroscopy, allowing for the study of ultrafast transport properties down to the nanometer length scale.We acknowledge financial support from the EPSRC and the Winton Program for the Physics of Sustainability. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 758826). C.S. acknowledges financial support by the Royal Commission of the Exhibition of 1851

    Correlating activity and defects in (photo)electrocatalysts using in-situ transient optical microscopy

    Full text link
    (Photo)electrocatalysts capture sunlight and use it to drive chemical reactions such as water splitting to produce H2. A major factor limiting photocatalyst development is their large heterogeneity which spatially modulates reactivity and precludes establishing robust structure-function relationships. To make such links requires simultaneously probing of the electrochemical environment at microscopic length scales (nm to um) and broad timescales (ns to s). Here, we address this challenge by developing and applying in-situ steady-state and transient optical microscopies to directly map and correlate local electrochemical activity with hole lifetimes, oxygen vacancy concentration and the photoelectrodes crystal structure. Using this combined approach alongside spatially resolved X-Ray absorption measurements, we study microstructural and point defects in prototypical hematite (Fe2O3) photoanodes. We demonstrate that regions of Fe2O3, adjacent to microstructural cracks have a better photoelectrochemical response and reduced back electron recombination due to an optimal oxide vacancy concentration, with the film thickness and carbon impurities also dramatically influencing activity in a complex manner. Our work highlights the importance of microscopic mapping to understand activity and the impact of defects in even, seemingly, homogeneous solid-state metal oxide photoelectrodes

    Air-stable bismuth sulfobromide (BiSBr) visible-light absorbers : optoelectronic properties and potential for energy harvesting

    Get PDF
    ns2 compounds have recently attracted considerable interest due to their potential to replicate the defect tolerance of lead-halide perovskites and overcome their toxicity and stability limitations. However, only a handful of compounds beyond the perovskite family have been explored thus far. Herein, we investigate bismuth sulfobromide (BiSBr), which is a quasi-one-dimensional semiconductor, but very little is known about its optoelectronic properties or how it can be processed as thin films. We develop a solution processing route to achieve phase-pure, stoichiometric BiSBr films (ca. 240 nm thick), which we show to be stable in ambient air for over two weeks without encapsulation. The bandgap (1.91 ± 0.06 eV) is ideal for harvesting visible light from common indoor light sources, and we calculate the optical limit in efficiency (i.e., spectroscopic limited maximum efficiency, SLME) to be 43.6% under 1000 lux white light emitting diode illumination. The photoluminescence lifetime is also found to exceed the 1 ns threshold for photovoltaic absorber materials worth further development. Through X-ray photoemission spectroscopy and Kelvin probe measurements, we find the BiSBr films grown to be n-type, with an electron affinity of 4.1 ± 0.1 eV and ionization potential of 6.0 ± 0.1 eV, which are compatible with a wide range of established charge transport layer materials. This work shows BiSBr to hold promise for indoor photovoltaics, as well as other visible-light harvesting applications, such as photoelectrochemical cells, or top-cells for tandem photovoltaics

    Long-range corrected exchange-correlation kernels to describe excitons in second-harmonic generation

    No full text
    International audienceWe investigate the role of excitons in second-harmonic generation (SHG) through the long-range corrected (LRC) exchange-correlation kernels: empirical LRC, Bootstrap, and jellium-with-a-gap model. We calculate the macroscopic second-order frequency-dependent susceptibility χ(2). We also present the frequency-dependent macroscopic dielectric function Ï”M which is a fundamental quantity in the theoretical derivation of χ(2). We assess the role of the long-range kernels in describing excitons in materials with different symmetry types: cubic zincblende, hexagonal wurtzite, and tetragonal symmetry. Our studies indicate that excitons play an important role in χ(2) bringing a strong enhancement of the SHG signal. Moreover, we found that the SHG enhancement follows a simple trend determined by the magnitude of the long-range corrected α-parameter. This trend is material dependent
    corecore