8 research outputs found

    Next-Generation Diagnostic with CRISPR/Cas: Beyond Nucleic Acid Detection

    No full text
    The early management, diagnosis, and treatment of emerging and re-emerging infections and the rising burden of non-communicable diseases (NCDs) are necessary. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system has recently acquired popularity as a diagnostic tool due to its ability to target specific genes. It uses Cas enzymes and a guide RNA (gRNA) to cleave target DNA or RNA. The discovery of collateral cleavage in CRISPR-Cas effectors such as Cas12a and Cas13a was intensively repurposed for the development of instrument-free, sensitive, precise and rapid point-of-care diagnostics. CRISPR/Cas demonstrated proficiency in detecting non-nucleic acid targets including protein, analyte, and hormones other than nucleic acid. CRISPR/Cas effectors can provide multiple detections simultaneously. The present review highlights the technical challenges of integrating CRISPR/Cas technology into the onsite assessment of clinical and other specimens, along with current improvements in CRISPR bio-sensing for nucleic acid and non-nucleic acid targets. It also highlights the current applications of CRISPR/Cas technologies

    Drug Resistance Reversal Potential of Nanoparticles/Nanocomposites via Antibiotic’s Potentiation in Multi Drug Resistant P. aeruginosa

    No full text
    Bacteria employ numerous resistance mechanisms against structurally distinct drugs by the process of multidrug resistance. A study was planned to discover the antibacterial potential of a graphene oxide nanosheet (GO), a graphene oxide–zinc oxide nanocomposite (GO/ZnO), a graphene oxide-chitosan nanocomposite (GO–CS), a zinc oxide decorated graphene oxide–chitosan nanocomposite (GO–CS/ZnO), and zinc oxide nanoparticles (ZnO) alone and in a blend with antibiotics against a PS-2 isolate of Pseudomonas aeruginosa. These nanocomposites reduced the MIC of tetracycline (TET) from 16 folds to 64 folds against a multidrug-resistant clinical isolate. Efflux pumps were interfered, as evident by an ethidium bromide synergy study with nanocomposites, as well as inhibiting biofilm synthesis. These nanoparticles/nanocomposites also decreased the mutant prevention concentration (MPC) of TET. To the best of our knowledge, this is the first report on nanomaterials as a synergistic agent via inhibition of efflux and biofilm synthesis

    Antibiotics potentiating potential of catharanthine against superbug <i>Pseudomonas aeruginosa</i>

    No full text
    <p>Multidrug resistance (MDR) put an alarming situation like preantibiotic era which compels us to invigorate the basic science of anti-infective chemotherapy. Hence, the drug resistant genes/proteins were explored as promising drug targets. Keeping this thing in mind, proteome of <i>Pseudomonas aeruginosa</i> PA01 was explored, which resulted in the identification of tripartite protein complexes (MexA, MexB, and OprM) as promising drug target for the screening of natural and synthetic inhibitors. The purpose of present investigation was to explore the drug resistance reversal potential mechanism of catharanthine isolated from the leaves of <i>Catharanthus roseous</i>. Hence, the test compound catharanthine was <i>in silico</i> screened using docking studies against the above receptors, which showed signiïŹcant binding affinity with these receptors. In order to validate the <i>in silico</i> findings, <i>in vitro</i> evaluation of the test compound was also carried out. In combination, catharanthine reduced the minimum inhibitory concentration MIC of tetracycline (TET) and streptomycin up to 16 and 8 folds, respectively. Further, in time kill assay, catharanthine in combination with TET reduced the cell viability in concentration dependent manner and was also able to reduce the mutation prevention concentration of TET. It was also deduced that drug resistance reversal potential of catharanthine was due to inhibition of the efflux pumps.</p

    Synergy of clavine alkaloid ‘chanoclavine’ with tetracycline against multi-drug-resistant <i>E. coli</i>

    No full text
    <p>The emergence of multi drug resistance (MDR) in Gram-negative bacteria (GNB) and lack of novel classes of antibacterial agents have raised an immediate need to identify antibacterial agents, which can reverse the phenomenon of MDR. The purpose of present study was to evaluate synergy potential and understanding the drug resistance reversal mechanism of chanoclavine isolated from <i>Ipomoea muricata</i> against the multi-drug-resistant clinical isolate of <i>Escherichia coli</i> (MDREC). Although chanoclavine did not show antibacterial activity of its own, but in combination, it could reduce the minimum inhibitory concentration (MIC) of tetracycline (TET) up to 16-folds. Chanoclavine was found to inhibit the efflux pumps which seem to be ATPase-dependent. In real-time expression analysis, chanoclavine showed down-regulation of different efflux pump genes and decreased the mutation prevention concentration of tetracycline. Further, <i>in silico</i> docking studies revealed significant binding affinity of chanoclavine with different proteins known to be involved in drug resistance. In <i>in silico</i> ADME/toxicity studies, chanoclavine was found safe with good intestinal absorption, aqueous solubility, medium blood–brain barrier (BBB), no CYP 2D6 inhibition, no hepatotoxicity, no skin irritancy, and non-mutagenic indicating towards drug likeliness of this molecule. Based on these observations, it is hypothesized that chanoclavine might be inhibiting the efflux of tetracycline from MDREC and thus enabling the more availability of tetracycline inside the cell for its action.</p

    Challenges in Accessing and Delivering Maternal and Child Health Services during the COVID-19 Pandemic: A Cross-Sectional Rapid Survey from Six States of India

    No full text
    Background/Objectives: Globally, the COVID-19 pandemic and its prevention and control policies have impacted maternal and child health (MCH) services. This study documents the challenges faced by patients in accessing MCH services, and the experiences of health care providers in delivering those services during the COVID-19 outbreak, explicitly focusing on the lockdown period in India. Methods: A cross-sectional study (rapid survey) was conducted in 18 districts from 6 states of India during March to June, 2020. The sample size included 540 MCH patients, 18 gynaecologists, 18 paediatricians, 18 district immunisation officers and 108 frontline health workers. Bivariate analysis and multivariable analysis were used to assess the association between sociodemographic characteristics, and challenges faced by the patients. Results: More than one-third of patients (n = 212; 39%) reported that accessing MCH services was a challenge during the lockdown period, with major challenges being transportation-related difficulties (n = 99; 46%) unavailability of hospital-based services (n = 54; 23%) and interrupted outreach health services (n = 39; 18.4%). The supply-side challenges mainly included lack of infrastructural preparedness for outbreak situations, and a shortage of human resources. Conclusions/Recommendations: A holistic approach is required that focuses on both preparedness and response to the outbreak, as well reassignment and reinforcement of health care professionals to continue catering to and maintaining essential MCH services during the pandemic

    Therapeutic Potential of Endophytic Compounds: A Special Reference to Drug Transporter Inhibitors

    No full text

    Proceedings of International Conference on Women Researchers in Electronics and Computing

    No full text
    This proceeding contains articles on the various research ideas of the academic community and practitioners presented at the international conference, “Women Researchers in Electronics and Computing” (WREC’2021). WREC'21 was organized in online mode by Dr. B R Ambedkar National Institute of Technology, Jalandhar (Punjab), INDIA during 22 – 24 April 2021. This conference was conceptualized with an objective to encourage and motivate women engineers and scientists to excel in science and technology and to be the role models for young girls to follow in their footsteps. With a view to inspire women engineers, pioneer and successful women achievers in the domains of VLSI design, wireless sensor networks, communication, image/ signal processing, machine learning, and emerging technologies were identified from across the globe and invited to present their work and address the participants in this women oriented conference. Conference Title: International Conference on Women Researchers in Electronics and ComputingConference Acronym: WREC'21Conference Date: 22–24 April 2021Conference Location: Online (Virtual Mode)Conference Organizers: Department of Electronics and Communication Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, INDI

    SARS-CoV-2 seroprevalence among the general population and healthcare workers in India, December 2020–January 2021

    No full text
    Background: Earlier serosurveys in India revealed seroprevalence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) of 0.73% in May–June 2020 and 7.1% in August–September 2020. A third serosurvey was conducted between December 2020 and January 2021 to estimate the seroprevalence of SARS-CoV-2 infection among the general population and healthcare workers (HCWs) in India. Methods: The third serosurvey was conducted in the same 70 districts as the first and second serosurveys. For each district, at least 400 individuals aged ≄10 years from the general population and 100 HCWs from subdistrict-level health facilities were enrolled. Serum samples from the general population were tested for the presence of immunoglobulin G (IgG) antibodies against the nucleocapsid (N) and spike (S1-RBD) proteins of SARS-CoV-2, whereas serum samples from HCWs were tested for anti-S1-RBD. Weighted seroprevalence adjusted for assay characteristics was estimated. Results: Of the 28,598 serum samples from the general population, 4585 (16%) had IgG antibodies against the N protein, 6647 (23.2%) had IgG antibodies against the S1-RBD protein, and 7436 (26%) had IgG antibodies against either the N protein or the S1-RBD protein. Weighted and assay-characteristic-adjusted seroprevalence against either of the antibodies was 24.1% [95% confidence interval (CI) 23.0–25.3%]. Among 7385 HCWs, the seroprevalence of anti-S1-RBD IgG antibodies was 25.6% (95% CI 23.5–27.8%). Conclusions: Nearly one in four individuals aged ≄10 years from the general population as well as HCWs in India had been exposed to SARS-CoV-2 by December 2020
    corecore