1,523 research outputs found
Microscopic analysis of multipole susceptibility of actinide dioxides: A scenario of multipole ordering in AmO
By evaluating multipole susceptibility of a seven-orbital impurity Anderson
model with the use of a numerical renormalization group method, we discuss
possible multipole states of actinide dioxides at low temperatures. In
particular, here we point out a possible scenario for multipole ordering in
americium dioxide. For Am ion with five electrons, it is considered
that the ground state is doublet and the first excited state is
quartet, but we remark that the ground state is easily
converted due to the competition between spin-orbit coupling and Coulomb
interactions. Then, we find that the quartet can be the ground
state of AmO even for the same crystalline electric field potential. In the
case of quartet ground state, the numerical results suggest that
high-order multipoles such as quadrupole and octupole can be relevant to
AmO.Comment: 8 pages, 4 figures. To appear in Phys. Rev.
Double Parton Scattering Singularity in One-Loop Integrals
We present a detailed study of the double parton scattering (DPS)
singularity, which is a specific type of Landau singularity that can occur in
certain one-loop graphs in theories with massless particles. A simple formula
for the DPS singular part of a four-point diagram with arbitrary
internal/external particles is derived in terms of the transverse momentum
integral of a product of light cone wavefunctions with tree-level matrix
elements. This is used to reproduce and explain some results for DPS
singularities in box integrals that have been obtained using traditional loop
integration techniques. The formula can be straightforwardly generalised to
calculate the DPS singularity in loops with an arbitrary number of external
particles. We use the generalised version to explain why the specific MHV and
NMHV six-photon amplitudes often studied by the NLO multileg community are not
divergent at the DPS singular point, and point out that whilst all NMHV
amplitudes are always finite, certain MHV amplitudes do contain a DPS
divergence. It is shown that our framework for calculating DPS divergences in
loop diagrams is entirely consistent with the `two-parton GPD' framework of
Diehl and Schafer for calculating proton-proton DPS cross sections, but is
inconsistent with the `double PDF' framework of Snigirev.Comment: 29 pages, 8 figures. Minor corrections and clarifications added.
Version accepted for publication in JHE
Parents' involvement in child care: do parental and work identities matter?
The current study draws on identity theory to explore mothers' and fathers' involvement in childcare. It examined the relationships between the salience and centrality of individuals’ parental and work-related identities and the extent to which they are involved in various forms of childcare. A sample of 148 couples with at least one child aged 6 years or younger completed extensive questionnaires. As hypothesized, the salience and centrality of parental identities were positively related to mothers' and fathers' involvement in childcare. Moreover, maternal identity salience was negatively related to fathers' hours of childcare and share of childcare tasks. Finally, work hours mediated the negative relationships between the centrality of work identities and time invested in childcare, and gender moderated this mediation effect. That is, the more central a mother's work identity, the more hours she worked for pay and the fewer hours she invested in childcare. These findings shed light on the role of parental identities in guiding behavioral choices, and attest to the importance of distinguishing between identity salience and centrality as two components of self-structure
The Oscillatory Behavior of the High-Temperature Expansion of Dyson's Hierarchical Model: A Renormalization Group Analysis
We calculate 800 coefficients of the high-temperature expansion of the
magnetic susceptibility of Dyson's hierarchical model with a Landau-Ginzburg
measure. Log-periodic corrections to the scaling laws appear as in the case of
a Ising measure. The period of oscillation appears to be a universal quantity
given in good approximation by the logarithm of the largest eigenvalue of the
linearized RG transformation, in agreement with a possibility suggested by K.
Wilson and developed by Niemeijer and van Leeuwen. We estimate to be
1.300 (with a systematic error of the order of 0.002) in good agreement with
the results obtained with other methods such as the -expansion. We
briefly discuss the relationship between the oscillations and the zeros of the
partition function near the critical point in the complex temperature plane.Comment: 21 pages, 10 Postcript figures, latex file, uses revte
Recommended from our members
Intracortical microstimulation of human somatosensory cortex induces natural perceptual biases
Time-order error, a psychophysical phenomenon in which the duration in between successive stimuli alters perception, has been studied for decades by neuroscientists and psychologists. To date, however, the locus of these effects is unknown. We use intracortical microstimulation of somatosensory cortex in three humans with spinal cord injury as a tool to bypass initial stages of processing and restrict the possible locations that signals could be modified. Using a 2-interval forced choice amplitude discrimination paradigm, we first assessed the extent to which order effects are observed. Comparing trials where the standard stimulus was in the first or second interval, we found that systematic biases are exhibited, typically causing the intensity of the second stimulus to be overestimated The degree of this overestimation for individual electrodes was dependent on the perceptual sensitivity to changes in stimulus amplitude. To investigate the role of memory on this phenomenon, we implemented a 2-interval magnitude estimation task in which participants were instructed to ignore the first stimulus and again found that the perceptual intensity of the second stimulus tended to be enhanced by the first in a manner that depended on the amplitude and duration of the first stimulus. Finally, we repeated both paradigms while varying the inter-stimulus interval to examine the timescale over which these effects occur and found that longer inter-stimulus intervals reduced the effect size. These results show that direct activation of primary somatosensory cortex is sufficient to induce time-order errors
Exact two-particle eigenstates in partially reduced QED
We consider a reformulation of QED in which covariant Green functions are
used to solve for the electromagnetic field in terms of the fermion fields. It
is shown that exact few-fermion eigenstates of the resulting Hamiltonian can be
obtained in the canonical equal-time formalism for the case where there are no
free photons. These eigenstates lead to two- and three-body Dirac-like
equations with electromagnetic interactions. Perturbative and some numerical
solutions of the two-body equations are presented for positronium and
muonium-like systems, for various strengths of the coupling.Comment: 33 pages, LaTex 2.09, 4 figures in EPS forma
First- and second-order phase transitions in a driven lattice gas with nearest-neighbor exclusion
A lattice gas with infinite repulsion between particles separated by
lattice spacing, and nearest-neighbor hopping dynamics, is subject to a drive
favoring movement along one axis of the square lattice. The equilibrium (zero
drive) transition to a phase with sublattice ordering, known to be continuous,
shifts to lower density, and becomes discontinuous for large bias. In the
ordered nonequilibrium steady state, both the particle and order-parameter
densities are nonuniform, with a large fraction of the particles occupying a
jammed strip oriented along the drive. The relaxation exhibits features
reminiscent of models of granular and glassy materials.Comment: 8 pages, 5 figures; results due to bad random number generator
corrected; significantly revised conclusion
Series studies of the Potts model. I: The simple cubic Ising model
The finite lattice method of series expansion is generalised to the -state
Potts model on the simple cubic lattice.
It is found that the computational effort grows exponentially with the square
of the number of series terms obtained, unlike two-dimensional lattices where
the computational requirements grow exponentially with the number of terms. For
the Ising () case we have extended low-temperature series for the
partition functions, magnetisation and zero-field susceptibility to
from . The high-temperature series for the zero-field partition
function is extended from to . Subsequent analysis gives
critical exponents in agreement with those from field theory.Comment: submitted to J. Phys. A: Math. Gen. Uses preprint.sty: included. 24
page
Series Expansion Calculation of Persistence Exponents
We consider an arbitrary Gaussian Stationary Process X(T) with known
correlator C(T), sampled at discrete times T_n = n \Delta T. The probability
that (n+1) consecutive values of X have the same sign decays as P_n \sim
\exp(-\theta_D T_n). We calculate the discrete persistence exponent \theta_D as
a series expansion in the correlator C(\Delta T) up to 14th order, and
extrapolate to \Delta T = 0 using constrained Pad\'e approximants to obtain the
continuum persistence exponent \theta. For the diffusion equation our results
are in exceptionally good agreement with recent numerical estimates.Comment: 5 pages; 5 page appendix containing series coefficient
Multi-Parton Interactions at the LHC
We review the recent progress in the theoretical description and experimental
observation of multiple parton interactions. Subjects covered include
experimental measurements of minimum bias interactions and of the underlying
event, models of soft physics implemented in Monte Carlo generators,
developments in the theoretical description of multiple parton interactions and
phenomenological studies of double parton scattering. This article stems from
contributions presented at the Helmholtz Alliance workshop on "Multi-Parton
Interactions at the LHC", DESY Hamburg, 13-15 September 2010.Comment: 68 page
- …