163 research outputs found

    ALA and ALA hexyl ester induction of porphyrins after their systemic administration to tumour bearing mice

    Get PDF
    The use of synthetic lipophilic molecules derived from 5-aminolevulinic acid (ALA) is currently under investigation to enhance cellular ALA penetration. In this work we studied the effect of systemic administration to mice of the hexyl ester of ALA (He-ALA) on porphyrin tissue synthesis as compared to ALA. In most normal tissues as well as in tumour, He-ALA induced less porphyrin synthesis than ALA after its systemic administration either intravenous or intraperitoneal, although explant organ cultures exposed to either ALA or He-ALA revealed equally active esterases. The only tissue that accumulated higher porphyrin levels from He-ALA (seven times more than ALA) was the brain, and this correlated well with a rapid increase in ALA/He-ALA content in brain after administration of He-ALA. This may be ascribed to a differential permeability to lipophilic substances controlled by the blood–brain barrier, a feature which could be further exploited to treat brain tumours

    Comparative effect of ALA derivatives on protoporphyrin IX production in human and rat skin organ cultures

    Get PDF
    Samples of human and rat skin in short-term organ culture exposed to ALA or a range of hydrophobic derivatives were examined for their effect on the accumulation of protoporphyrin IX (PpIX) measured using fluorescence spectroscopy. With the exception of carbobenzoyloxy-D-phenylalanyl-5-ALA-ethyl ester the data presented indicate that, in normal tissues, ALA derivatives generate protoporphyrin IX more slowly than ALA, suggesting that they are less rapidly taken up and/or converted to free ALA. However, the resultant depot effect may lead to the enhanced accumulation of porphyrin over long exposure periods, particularly in the case of ALA-methyl ester or ALA-hexyl ester, depending on the applied concentration and the exposed tissue. Addition of the iron chelator, CP94, greatly increased PpIX accumulation in human skin exposed to ALA, ALA-methyl ester and ALA-hexyl ester. The effect in rat skin was less marked.</p

    Porphyrin accumulation induced by 5-aminolaevulinic acid esters in tumour cells growing in vitro and in vivo

    Get PDF
    The ability of 5-aminolaevulinic acid and some of its esterified derivatives to induce porphyrin accumulation has been examined in CaNT murine mammary carcinoma cells growing in culture and as tumours in vivo. Topical or intravenous administration of 5-aminolaevulinic acid-esters to mice bearing subcutaneous tumours produced lower porphyrin levels in the tumour than an equimolar dose of 5-aminolaevulinic acid. Reducing the dose of intravenous hexyl- or benzyl-ALA and topical hexyl-5-aminolaevulinic acid resulted in a dose-dependent reduction in porphyrin accumulation. A number of normal tissues accumulated higher concentrations of porphyrins than tumour tissue following intravenous administration of 5-aminolaevulinic acid-esters. Esterase activity in these normal tissues was greater than that in tumour tissue. In contrast to the situation in vivo, all of the 5-aminolaevulinic acid-esters examined were at least as effective as 5-aminolaevulinic acid when applied to cloned CaNT cells in vitro, with the drug concentration required for maximum porphyrin accumulation varying with ester chain-length. Tumour cells growing in culture released esterase activity into the medium. These findings suggest that the efficacy of 5-aminolaevulinic esters may vary depending on the esterase activity of the target tissue, and suggest caution when interpreting the findings of in vitro studies using these and similar prodrugs

    Protoporphyrin IX enhancement by 5-aminolaevulinic acid peptide derivatives and the effect of RNA silencing on intracellular metabolism

    Get PDF
    Intracellular generation of the photosensitiser, protoporphyrin IX, from a series of dipeptide derivatives of the haem precursor, 5-aminolaevulinic acid (ALA), was investigated in transformed PAM212 murine keratinocytes, together with studies of their intracellular metabolism. Porphyrin production was substantially increased compared with equimolar ALA using N-acetyl terminated phenylalanyl, leucinyl and methionyl ALA methyl ester derivatives in the following order: Ac-L-phenylalanyl-ALA-Me, Ac-L-methionyl-ALA-Me and Ac-L-leucinyl-ALA-Me. The enhanced porphyrin production was in good correlation with improved photocytotoxicity, with no intrinsic dark toxicity apparent. However, phenylalanyl derivatives without the acetyl/acyl group at the N terminus induced significantly less porphyrin, and the replacement of the acetyl group by a benzyloxycarbonyl group resulted in no porphyrin production. Porphyrin production was reduced in the presence of class-specific protease inhibitors, namely serine protease inhibitors. Using siRNA knockdown of acylpeptide hydrolase (ACPH) protein expression, we showed the involvement of ACPH, a member of the prolyl oligopeptidase family of serine peptidases, in the hydrolytic cleavage of ALA from the peptide derivatives. In conclusion, ALA peptide derivatives are capable of delivering ALA efficiently to cells and enhancing porphyrin synthesis and photocytotoxicity; however, the N-terminus state, whether free or substituted, plays an important role in determining the biological efficacy of ALA peptide derivatives

    Oligomerization of ZFYVE27 (Protrudin) Is Necessary to Promote Neurite Extension

    Get PDF
    ZFYVE27 (Protrudin) was originally identified as an interacting partner of spastin, which is most frequently mutated in hereditary spastic paraplegia. ZFYVE27 is a novel member of FYVE family, which is implicated in the formation of neurite extensions by promoting directional membrane trafficking in neurons. Now, through a yeast two-hybrid screen, we have identified that ZFYVE27 interacts with itself and the core interaction region resides within the third hydrophobic region (HR3) of the protein. We confirmed the ZFYVE27's self-interaction in the mammalian cells by co-immunoprecipitation and co-localization studies. To decipher the oligomeric nature of ZFYVE27, we performed sucrose gradient centrifugation and showed that ZFYVE27 oligomerizes into dimer/tetramer forms. Sub-cellular fractionation and Triton X-114 membrane phase separation analysis indicated that ZFYVE27 is a peripheral membrane protein. Furthermore, ZFYVE27 also binds to phosphatidylinositol 3-phosphate lipid moiety. Interestingly, cells expressing ZFYVE27ΔHR3 failed to produce protrusions instead caused swelling of cell soma. When ZFYVE27ΔHR3 was co-expressed with wild-type ZFYVE27 (ZFYVE27WT), it exerted a dominant negative effect on ZFYVE27WT as the cells co-expressing both proteins were also unable to induce protrusions and showed cytoplasmic swelling. Altogether, it is evident that a functionally active form of oligomer is crucial for ZFYVE27 ability to promote neurite extensions

    Identification and structural characterization of FYVE domain-containing proteins of Arabidopsis thaliana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>FYVE domains have emerged as membrane-targeting domains highly specific for phosphatidylinositol 3-phosphate (PtdIns(3)<it>P</it>). They are predominantly found in proteins involved in various trafficking pathways. Although FYVE domains may function as individual modules, dimers or in partnership with other proteins, structurally, all FYVE domains share a fold comprising two small characteristic double-stranded β-sheets, and a C-terminal α-helix, which houses eight conserved Zn<sup>2+ </sup>ion-binding cysteines. To date, the structural, biochemical, and biophysical mechanisms for subcellular targeting of FYVE domains for proteins from various model organisms have been worked out but plant FYVE domains remain noticeably under-investigated.</p> <p>Results</p> <p>We carried out an extensive examination of all <it>Arabidopsis </it>FYVE domains, including their identification, classification, molecular modeling and biophysical characterization using computational approaches. Our classification of fifteen <it>Arabidopsis </it>FYVE proteins at the outset reveals unique domain architectures for FYVE containing proteins, which are not paralleled in other organisms. Detailed sequence analysis and biophysical characterization of the structural models are used to predict membrane interaction mechanisms previously described for other FYVE domains and their subtle variations as well as novel mechanisms that seem to be specific to plants.</p> <p>Conclusions</p> <p>Our study contributes to the understanding of the molecular basis of FYVE-based membrane targeting in plants on a genomic scale. The results show that FYVE domain containing proteins in plants have evolved to incorporate significant differences from those in other organisms implying that they play a unique role in plant signaling pathways and/or play similar/parallel roles in signaling to other organisms but use different protein players/signaling mechanisms.</p

    SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless

    Get PDF
    Drosophila Wingless (Wg) acts as a morphogen during development. Wg secretion is controlled by a seven-pass transmembrane cargo Wntless (Wls). We have recently identified retromer as a key regulator involved in Wls trafficking. As sorting nexin (SNX) molecules are essential components of the retromer complex, we hypothesized that specific SNX(s) is required for retromer-mediated Wnt secretion. Here, we generated Drosophila mutants for all of the eight snx members, and identified Drosophila SNX3 (DSNX3) as an essential molecule required for Wg secretion. We show that Wg secretion and its signaling activity are defective in Dsnx3 mutant clones in wing discs. Wg levels in the culture medium of Dsnx3-depleted S2 cells are also markedly reduced. Importantly, Wls levels are strikingly reduced in Dsnx3 mutant cells, and overexpression of Wls can rescue the Wg secretion defect observed in Dsnx3 mutant cells. Moreover, DSNX3 can interact with the retromer component Vps35, and co-localize with Vps35 in early endosomes. These data indicate that DSNX3 regulates Wg secretion via retromer-dependent Wls recycling. In contrast, we found that Wg secretion is not defective in cells mutant for Drosophila snx1 and snx6, two components of the classical retromer complex. Ectopic expression of DSNX1 or DSNX6 fails to rescue the Wg secretion defect in Dsnx3 mutant wing discs and in Dsnx3 dsRNA-treated S2 cells. These data demonstrate the specificity of the DSNX3-retromer complex in Wls recycling. Together, our findings suggest that DSNX3 acts as a cargo-specific component of retromer, which is required for endocytic recycling of Wls and Wg/Wnt secretion

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research
    corecore