193 research outputs found

    Povećanje letalnog učinka bleomicina na stanice HeLa i V79 s pomoću pčelinjeg otrova

    Get PDF
    This study investigated possible growth-inhibiting effects of bee venom applied alone or in combination with a cytotoxic drug bleomycin on HeLa and V79 cells in vitro based on clone formation, cell counting, and apoptosis. Melittin, the key component of bee venom, is a potent inhibitor of calmodulin activity, and also a potent inhibitor cell growth and clonogenicity. Intracellular accumulation of melittin correlates with the cytotoxicity of antitumour agents. Previous studies indicated that some calcium antagonists and calmodulin inhibitors enhanced intracellular levels of antitumor agents by inhibiting their outward transport. In this study, treatment of exponentially growing HeLa and V79 cells with bleomycin caused a dose-dependent decrease in cell survival due to DNA damage. This lethal effect was potentiated by adding a non-lethal dose of the bee venom. By preventing repair of damaged DNA, bee venom inhibited recovery from potentially lethal damage induced by bleomycin in V79 and HeLa cells. Apoptosis, necrosis, and lysis were presumed as possible mechanisms by which bee venom inhibited growth and clonogenicity of V79 cells. HeLa cells, on the other hand, showed greater resistance to bee venom. Our findings suggest that bee venom might find a therapeutic use in enhancing cytotoxicity of antitumour agent bleomycin.U uvjetima in vitro istražen je inhibitorni učinak pčelinjeg otrova, samog ili združenog s citostatikom bleomicinom, na rast stanica HeLa i V79. Rabljene su sljedeće metode: brojenje stanica, metoda klonskog rasta i apoptoza. Poznato je da neki antagonisti kalcija i kalmodulinski inhibitori povisuju unutarstaničnu razinu protutumorskih lijekova inhibirajući njihov prijenos iz stanice. Unutarstanična akumulacija melitina izravno povećava citotoksični učinak protutumorskog lijeka. Obrada stanica HeLa i V79 u eksponencijalnoj fazi rasta bleomicinom uzrokuje oštećenje DNA ovisno o dozi te smanjenje broja živih stanica. Uočeno je da se letalni učinak bleomicina može pojačati dodatkom neletalne doze pčelinjeg otrova. Pčelinji otrov pritom inhibira popravak nastalih oštećenja u stanicama HeLa i V79 te sprječava oporavak stanica tretiranih bleomicinom. Apoptoza, nekroza i liza mogući su mehanizmi kojima pčelinji otrov inhibira rast i stvaranje kolonija stanica V79, dok HeLa-stanice pokazuju pojačanu otpornost na pčelinji otrov. Istraživanje također potvrđuje mogućnost uporabe pčelinjeg otrova u povećanju citotoksičnosti bleomicina

    Knowledge-based matrix factorization temporally resolves the cellular responses to IL-6 stimulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>External stimulations of cells by hormones, cytokines or growth factors activate signal transduction pathways that subsequently induce a re-arrangement of cellular gene expression. The analysis of such changes is complicated, as they consist of multi-layered temporal responses. While classical analyses based on clustering or gene set enrichment only partly reveal this information, matrix factorization techniques are well suited for a detailed temporal analysis. In signal processing, factorization techniques incorporating data properties like spatial and temporal correlation structure have shown to be robust and computationally efficient. However, such correlation-based methods have so far not be applied in bioinformatics, because large scale biological data rarely imply a natural order that allows the definition of a delayed correlation function.</p> <p>Results</p> <p>We therefore develop the concept of graph-decorrelation. We encode prior knowledge like transcriptional regulation, protein interactions or metabolic pathways in a weighted directed graph. By linking features along this underlying graph, we introduce a partial ordering of the features (e.g. genes) and are thus able to define a graph-delayed correlation function. Using this framework as constraint to the matrix factorization task allows us to set up the fast and robust graph-decorrelation algorithm (GraDe). To analyze alterations in the gene response in <it>IL-6 </it>stimulated primary mouse hepatocytes, we performed a time-course microarray experiment and applied GraDe. In contrast to standard techniques, the extracted time-resolved gene expression profiles showed that <it>IL-6 </it>activates genes involved in cell cycle progression and cell division. Genes linked to metabolic and apoptotic processes are down-regulated indicating that <it>IL-6 </it>mediated priming renders hepatocytes more responsive towards cell proliferation and reduces expenditures for the energy metabolism.</p> <p>Conclusions</p> <p>GraDe provides a novel framework for the decomposition of large-scale 'omics' data. We were able to show that including prior knowledge into the separation task leads to a much more structured and detailed separation of the time-dependent responses upon <it>IL-6 </it>stimulation compared to standard methods. A Matlab implementation of the GraDe algorithm is freely available at <url>http://cmb.helmholtz-muenchen.de/grade</url>.</p

    Non-specific interstitial pneumonia in cigarette smokers: a CT study

    Get PDF
    The goal of this study was to seek indirect evidence that smoking is an aetiological factor in some patients with non-specific interstitial pneumonia (NSIP). Ten current and eight ex-smokers with NSIP were compared to controls including 137 current smokers with no known interstitial lung disease and 11 non-smokers with NSIP. Prevalence and extent of emphysema in 18 smokers with NSIP were compared with subjects meeting GOLD criteria for chronic obstructive pulmonary disease (COPD; group A; n = 34) and healthy smokers (normal FEV1; group B; n = 103), respectively. Emphysema was present in 14/18 (77.8%) smokers with NSIP. Emphysema did not differ in prevalence between NSIP patients and group A controls (25/34, 73.5%), but was strikingly more prevalent in NSIP patients than in group B controls (18/103, 17.5%, P < 0.0005). On multiple logistic regression, the likelihood of emphysema increased when NSIP was present (OR = 18.8; 95% CI = 5.3–66.3; P < 0.0005) and with increasing age (OR = 1.04; 95% CI = 0.99–1.11; P = 0.08). Emphysema is as prevalent in smokers with NSIP as in smokers with COPD, and is strikingly more prevalent in these two groups than in healthy smoking controls. The association between NSIP and emphysema provides indirect support for a smoking pathogenesis hypothesis in some NSIP patients

    Fact and fiction in housing research: utilizing the creative imagination

    Get PDF
    As much of our conceptual framework is informed by the experience of the imagination, there is much to be learnt from a study of various creative forms. Narrative fiction can be one such form, allowing us to gain a useful insight into complex features of social life. The purpose of this article is to investigate the treatment of housing issues in contemporary literature in order to gain insights into attitudes, experiences and interpretations from the perspective of a broad cultural milieu. Discussions of professionalism, housing tenure and homelessness have tended to be conducted within a narrow framework and adopted orthodox modes of evaluation. Consequently, the neglect of housing within a wider cultural context has reinforced the isolation of housing issues. The article argues that although discussions of housing and housing policy have been seriously limited within the contemporary novel, there are a number of key insights that can be gained from a discussion of issues within a fictional setting

    Regeneration of Soft Tissues Is Promoted by MMP1 Treatment after Digit Amputation in Mice

    Get PDF
    The ratio of matrix metalloproteinases (MMPs) to the tissue inhibitors of metalloproteinases (TIMPs) in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt) demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix (ECM) remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells, capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in amputated digits of adult mice. © 2013 Mu et al

    C/EBPβ-Thr217 Phosphorylation Signaling Contributes to the Development of Lung Injury and Fibrosis in Mice

    Get PDF
    mice are refractory to Bleomycin-induced lung fibrosis the molecular mechanisms remain unknown. Here we show that blocking the ribosomal S-6 kinase (RSK) phosphorylation of the CCAAT/Enhancer Binding Protein (C/EBP)-β on Thr217 (a RSK phosphoacceptor) with either a single point mutation (Ala217), dominant negative transgene or a blocking peptide containing the mutated phosphoacceptor ameliorates the progression of lung injury and fibrosis induced by Bleomycin in mice. mice with a cell permeant, C/EBPβ peptide that inhibits phosphorylation of C/EBPβ on Thr217 (40 µg instilled intracheally on day-2 and day-6 after the single Bleomycin dose) also blocked the progression of lung injury and fibrosis induced by Bleomycin. Phosphorylation of human C/EBPβ on Thr266 (human homologue phosphoacceptor) was induced in collagen-activated human lung fibroblasts in culture as well as in activated lung fibroblasts in situ in lungs of patients with severe lung fibrosis but not in control lungs, suggesting that this signaling pathway may be also relevant in human lung injury and fibrosis.These data suggest that the RSK-C/EBPβ phosphorylation pathway may contribute to the development of lung injury and fibrosis

    Tumor-Like Stem Cells Derived from Human Keloid Are Governed by the Inflammatory Niche Driven by IL-17/IL-6 Axis

    Get PDF
    Alterations in the stem cell niche are likely to contribute to tumorigenesis; however, the concept of niche promoted benign tumor growth remains to be explored. Here we use keloid, an exuberant fibroproliferative dermal growth unique to human skin, as a model to characterize benign tumor-like stem cells and delineate the role of their "pathological" niche in the development of the benign tumor.Subclonal assay, flow cytometric and multipotent differentiation analyses demonstrate that keloid contains a new population of stem cells, named keloid derived precursor cells (KPCs), which exhibit clonogenicity, self-renewal, distinct embryonic and mesenchymal stem cell surface markers, and multipotent differentiation. KPCs display elevated telomerase activity and an inherently upregulated proliferation capability as compared to their peripheral normal skin counterparts. A robust elevation of IL-6 and IL-17 expression in keloid is confirmed by cytokine array, western blot and ELISA analyses. The altered biological functions are tightly regulated by the inflammatory niche mediated by an autocrine/paracrine cytokine IL-17/IL-6 axis. Utilizing KPCs transplanted subcutaneously in immunocompromised mice we generate for the first time a human keloid-like tumor model that is driven by the in vivo inflammatory niche and allows testing of the anti-tumor therapeutic effect of antibodies targeting distinct niche components, specifically IL-6 and IL-17.These findings support our hypothesis that the altered niche in keloids, predominantly inflammatory, contributes to the acquirement of a benign tumor-like stem cell phenotype of KPCs characterized by the uncontrolled self-renewal and increased proliferation, supporting the rationale for in vivo modification of the "pathological" stem cell niche as a novel therapy for keloid and other mesenchymal benign tumors
    corecore