1,642 research outputs found
On the Universality of the Entropy-Area Relation
We present an argument that, for a large class of possible dynamics, a
canonical quantization of gravity will satisfy the Bekenstein-Hawking
entropy-area relation. This result holds for temperatures low compared to the
Planck temperature and for boundaries with areas large compared to Planck area.
We also relate our description, in terms of a grand canonical ensemble, to
previous geometric entropy calculations using area ensembles.Comment: 6 page
Recommended from our members
Femtosecond Pump-Probe Diagnostics Of Preformed Plasma Channels
We report on recent ultrafast pump-probe experiments 28 in He plasma waveguides using 800 nm, 80 fs pump pulses of 0.2 x 1018 W/cm2 peak guided intensity, and single orthogonally-polarized 800 nm probe pulses with similar to0.1% of pump intensity. The main results are: (1) We observe frequency-domain interference between the probe and a weak, depolarized component of the pump that differs substantially in mode shape from the injected pump pulse; (2) we observe spectral blue-shifts in the transmitted probe that are not evident in the transmitted pump. The evidence indicates that pump depolarization and probe blue-shifts both originate near the channel entrance.Physic
Spin foam model from canonical quantization
We suggest a modification of the Barrett-Crane spin foam model of
4-dimensional Lorentzian general relativity motivated by the canonical
quantization. The starting point is Lorentz covariant loop quantum gravity. Its
kinematical Hilbert space is found as a space of the so-called projected spin
networks. These spin networks are identified with the boundary states of a spin
foam model and provide a generalization of the unique Barrette-Crane
intertwiner. We propose a way to modify the Barrett-Crane quantization
procedure to arrive at this generalization: the B field (bi-vectors) should be
promoted not to generators of the gauge algebra, but to their certain
projection. The modification is also justified by the canonical analysis of
Plebanski formulation. Finally, we compare our construction with other
proposals to modify the Barret-Crane model.Comment: 26 pages; presentation improved, important changes concerning the
closure constraint and the vertex amplitude; minor correctio
Optimization of the neutron yield in fusion plasmas produced by Coulomb explosions of deuterium clusters irradiated by a petawatt laser
The kinetic energy of hot (multi-keV) ions from the laser-driven Coulomb explosion of deuterium clusters and the resulting fusion yield in plasmas formed from these exploding clusters has been investigated under a variety of conditions using the Texas Petawatt laser. An optimum laser intensity was found for producing neutrons in these cluster fusion plasmas with corresponding average ion energies of 14 keV. The substantial volume (1-10 mm(3)) of the laser-cluster interaction produced by the petawatt peak power laser pulse led to a fusion yield of 1.6x10(7) neutrons in a single shot with a 120 J, 170 fs laser pulse. Possible effects of prepulses are discussed. DOI: 10.1103/PhysRevE.87.023106Glenn Focht Memorial FellowshipNNSA DE-FC52-08NA28512DOE Office of Basic Energy SciencesPhysic
Recommended from our members
The Texas Petawatt Laser And Current Experiments
The Texas Petawatt Laser is operational with experimental campaigns executed in both F/40 and F3 target chambers. Recent improvements have resulted in intensities of >2x10(21) W/cm(2) on target. Experimental highlights include, accelerated electron energies of >2 GeV, DD fusion ion temperatures >25 keV and isochorically heated solids to 10-50 eV.Physic
Geometry of spin-field coupling on the worldline
We derive a geometric representation of couplings between spin degrees of
freedom and gauge fields within the worldline approach to quantum field theory.
We combine the string-inspired methods of the worldline formalism with elements
of the loop-space approach to gauge theory. In particular, we employ the loop
(or area) derivative operator on the space of all holonomies which can
immediately be applied to the worldline representation of the effective action.
This results in a spin factor that associates the information about spin with
"zigzag" motion of the fluctuating field. Concentrating on the case of quantum
electrodynamics in external fields, we obtain a purely geometric representation
of the Pauli term. To one-loop order, we confirm our formalism by rederiving
the Heisenberg-Euler effective action. Furthermore, we give closed-form
worldline representations for the all-loop order effective action to lowest
nontrivial order in a small-N_f expansion.Comment: 18 pages, v2: references added, minor changes, matches PRD versio
Homogeneous Loop Quantum Cosmology: The Role of the Spin Connection
Homogeneous cosmological models with non-vanishing intrinsic curvature
require a special treatment when they are quantized with loop quantum
cosmological methods. Guidance from the full theory which is lost in this
context can be replaced by two criteria for an acceptable quantization,
admissibility of a continuum approximation and local stability. A quantization
of the corresponding Hamiltonian constraints is presented and shown to lead to
a locally stable, non-singular evolution compatible with almost classical
behavior at large volume. As an application, the Bianchi IX model and its
modified behavior close to its classical singularity is explored.Comment: revtex4, 36 pages, 10 figures. In version 2 the introduction is
expanded, section III E is added and a paragraph on relevance of results is
added in the conclusions. Refs updated, results unchanged. To appear in
Class. Quant. Gravit
Multi-GeV Electron Generation Using Texas Petawatt Laser
We present simulation results and experimental setup for multi-GeV electron generation by a laser plasma wake field accelerator (LWFA) driven by the Texas Petawatt (TPW) laser. Simulations show that, in plasma of density n(e) = 2 - 4 x cm(-3), the TPW laser pulse (1.1 PW, 170 fs) can self-guide over 5 Rayleigh ranges, while electrons self-injected into the LWFA can accelerate up to 7 GeV. Optical diagnostic methods employed to observe the laser beam self-guiding, electron trapping and plasma bubble formation and evolution are discussed. Electron beam diagnostics, including optical transition radiation (OTR) and electron gamma ray shower (EGS) generation, are discussed as well.Physic
- …
