11 research outputs found

    A new urban landscape in East–Southeast Asia, 2000–2010

    No full text
    East–Southeast Asia is currently one of the fastest urbanizing regions in the world, with countries such as China climbing from 20 to 50% urbanized in just a few decades. By 2050, these countries are projected to add 1 billion people, with 90% of that growth occurring in cities. This population shift parallels an equally astounding amount of built-up land expansion. However, spatially-and temporally-detailed information on regional-scale changes in urban land or population distribution do not exist; previous efforts have been either sample-based, focused on one country, or drawn conclusions from datasets with substantial temporal/spatial mismatch and variability in urban definitions. Using consistent methodology, satellite imagery and census data for >1000 agglomerations in the East–Southeast Asian region, we show that urban land increased >22% between 2000 and 2010 (from 155 000 to 189 000 km2), an amount equivalent to the area of Taiwan, while urban populations climbed >31% (from 738 to 969 million). Although urban land expanded at unprecedented rates, urban populations grew more rapidly, resulting in increasing densities for the majority of urban agglomerations, including those in both more developed (Japan, South Korea) and industrializing nations (China, Vietnam, Indonesia). This result contrasts previous sample-based studies, which conclude that cities are universally declining in density. The patterns and rates of change uncovered by these datasets provide a unique record of the massive urban transition currently underway in East–Southeast Asia that is impacting local-regional climate, pollution levels, water quality/availability, arable land, as well as the livelihoods and vulnerability of populations in the regio

    Modelling changing population distributions: an example of the Kenyan Coast, 1979-2009

    Get PDF
    Large-scale gridded population datasets are usually produced for the year of input census data using a top-down approach and projected backward and forward in time using national growth rates. Such temporal projections do not include any subnational variation in population distribution trends and ignore changes in geographical covariates such as urban land cover changes. Improved predictions of population distribution changes over time require the use of a limited number of covariates that are time-invariant or temporally explicit. Here we make use of recently released multi-temporal high-resolution global settlement layers, historical census data and latest developments in population distribution modelling methods to reconstruct population distribution changes over 30 years across the Kenyan Coast. We explore the methodological challenges associated with the production of gridded population distribution time-series in data-scarce countries and show that trade-offs have to be found between spatial and temporal resolutions when selecting the best modelling approach. Strategies used to fill data gaps may vary according to the local context and the objective of the study. This work will hopefully serve as a benchmark for future developments of population distribution time-series that are increasingly required for population-at-risk estimations and spatial modelling in various fields

    Spatial analysis and characteristics of pig farming in Thailand

    No full text
    Background: In Thailand, pig production intensified significantly during the last decade, with many economic, epidemiological and environmental implications. Strategies toward more sustainable future developments are currently investigated, and these could be informed by a detailed assessment of the main trends in the pig sector, and on how different production systems are geographically distributed. This study had two main objectives. First, we aimed to describe the main trends and geographic patterns of pig production systems in Thailand in terms of pig type (native, breeding, and fattening pigs), farm scales (smallholder and large-scale farming systems) and type of farming systems (farrow-to-finish, nursery, and finishing systems) based on a very detailed 2010 census. Second, we aimed to study the statistical spatial association between these different types of pig farming distribution and a set of spatial variables describing access to feed and markets. Results: Over the last decades, pig population gradually increased, with a continuously increasing number of pigs per holder, suggesting a continuing intensification of the sector. The different pig-production systems showed very contrasted geographical distributions. The spatial distribution of large-scale pig farms corresponds with that of commercial pig breeds, and spatial analysis conducted using Random Forest distribution models indicated that these were concentrated in lowland urban or peri-urban areas, close to means of transportation, facilitating supply to major markets such as provincial capitals and the Bangkok Metropolitan region. Conversely the smallholders were distributed throughout the country, with higher densities located in highland, remote, and rural areas, where they supply local rural markets. A limitation of the study was that pig farming systems were defined from the number of animals per farm, resulting in their possible misclassification, but this should have a limited impact on the main patterns revealed by the analysis. Conclusions: The very contrasted distribution of different pig production systems present opportunities for future regionalization of pig production. More specifically, the detailed geographical analysis of the different production systems will be used to spatially-inform planning decisions for pig farming accounting for the specific health, environment and economical implications of the different pig production systems.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Annually modelling built-settlements between remotely-sensed observations using relative changes in subnational populations and lights at night

    No full text
    Mapping urban features/human built-settlement extents at the annual time step has a wide variety of applications in demography, public health, sustainable development, and many other fields. Recently, while more multitemporal urban features/human built-settlement datasets have become available, issues still exist in remotely-sensed imagery due to spatial and temporal coverage, adverse atmospheric conditions, and expenses involved in producing such datasets. Remotely-sensed annual time-series of urban/built-settlement extents therefore do not yet exist and cover more than specific local areas or city-based regions. Moreover, while a few high-resolution global datasets of urban/built-settlement extents exist for key years, the observed date often deviates many years from the assigned one. These challenges make it difficult to increase temporal coverage while maintaining high fidelity in the spatial resolution. Here we describe an interpolative and flexible modelling framework for producing annual built-settlement extents. We use a combined technique of random forest and spatio-temporal dasymetric modelling with open source subnational data to produce annual 100 m × 100 m resolution binary built-settlement datasets in four test countries located in varying environmental and developmental contexts for test periods of five-year gaps. We find that in the majority of years, across all study areas, the model correctly identified between 85 and 99% of pixels that transition to built-settlement. Additionally, with few exceptions, the model substantially out performed a model that gave every pixel equal chance of transitioning to built-settlement in each year. This modelling framework shows strong promise for filling gaps in cross-sectional urban features/built-settlement datasets derived from remotely-sensed imagery, provides a base upon which to create urban future/built-settlement extent projections, and enables further exploration of the relationships between urban/built-settlement area and population dynamics

    Sub-national mapping of population pyramids and dependency ratios in Africa and Asia

    Get PDF
    The age group composition of populations varies substantially across continents and within countries, and is linked to levels of development, health status and poverty. The subnational variability in the shape of the population pyramid as well as the respective dependency ratio are reflective of the different levels of development of a country and are drivers for a country's economic prospects and health burdens. Whether measured as the ratio between those of working age and those young and old who are dependent upon them, or through separate young and old-age metrics, dependency ratios are often highly heterogeneous between and within countries. Assessments of subnational dependency ratio and age structure patterns have been undertaken for specific countries and across high income regions, but to a lesser extent across the low income regions. In the framework of the WorldPop Project, through the assembly of over 100 million records across 6,389 subnational administrative units, subnational dependency ratio and high resolution gridded age/sex group datasets were produced for 87 countries in Africa and Asia.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Modelling changing population distributions: an example of the Kenyan Coast, 1979–2009

    No full text
    Large-scale gridded population datasets are usually produced for the year of input census data using a top-down approach and projected backward and forward in time using national growth rates. Such temporal projections do not include any subnational variation in population distribution trends and ignore changes in geographical covariates such as urban land cover changes. Improved predictions of population distribution changes over time require the use of a limited number of covariates that are time-invariant or temporally explicit. Here we make use of recently released multi-temporal high-resolution global settlement layers, historical census data and latest developments in population distribution modelling methods to reconstruct population distribution changes over 30 years across the Kenyan Coast. We explore the methodological challenges associated with the production of gridded population distribution time-series in data-scarce countries and show that trade-offs have to be found between spatial and temporal resolutions when selecting the best modelling approach. Strategies used to fill data gaps may vary according to the local context and the objective of the study. This work will hopefully serve as a benchmark for future developments of population distribution time-series that are increasingly required for population-at-risk estimations and spatial modelling in various fields.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Exploring nationally and regionally defined models for large area population mapping

    No full text
    Interactions between humans, diseases and the environment take place across a range of temporal and spatial scales, making accurate, contemporary data on human population distributions critical for a variety of disciplines. Methods for disaggregating census data to finer-scale, gridded population density estimates continue to be refined as computational power increases and more detailed census, input, and validation data sets become available. However, the availability of spatially detailed census data still varies widely by country. In this study, we develop quantitative guidelines for choosing regionally parameterized census count disaggregation models over country-specific models. We examine underlying methodological considerations for improving gridded population data sets for countries with coarser scale census data by investigating regional versus country-specific models used to estimate density surfaces for redistributing census counts. Consideration is given to the spatial resolution of input census data using examples from East Africa and Southeast Asia. Results suggest that for many countries more accurate population maps can be produced by using regionally parameterized models where more spatially refined data exists than that which is available for the focal country. This study highlights the advancement of statistical toolsets and considerations for underlying data used in generating widely used gridded population data
    corecore