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a b s t r a c t

Spatial techniques and fine-scale geographic data may be combined in a variety of innovative ways to
serve high-resolution population modeling efforts at local scales, which has been further facilitated by
growing computation power and access to open-source spatial data. Previous work has highlighted the
importance of a dasymetric approach to produce a parcel-based high-resolution gridded population
surface (HGPS). In this study, we investigate the application of land-cover data integrated with the
parcel-based HGPS to further improve the accuracy of the HGPS. Consideration is given to twelve
combinations made by three land cover strategies (1- no land cover class, 2- five separate classes, and 3-
three combined classes) and four property type strategies (1- seven types from an empirical study, 2-
eight residential types, 3- seventeen types within Alachua County, and 4- twenty-five types within
Florida). Results from different strategies are statistically compared with the most significant combi-
nation identified as three combined land-cover classes (heavy vegetation, 0e50% and >50e100%
impervious surface) and with seven property types from the empirical study (single family, mobile
family, multi-family (�10 and <10 units), condominiums, mobile homes parks, and homes for the aged).
A final data set named the Enhanced HGPS (E-HGPS) is created for Alachua County, Florida, with a
distribution of population counts at the scale of individual housing units. This study highlights an
innovative approach to incorporating land-cover and parcel data for the purpose of spatial population
modeling, and holds potential to broaden the E-HGPS to a state or regional scope.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The demands for spatially-explicit population products in
various fields continue to increase (Gaughan, Stevens, Linard, Jia, &
Tatem, 2013; Linard, Gilbert, Snow, Noor, & Tatem, 2012; Tatem
et al., 2013) and as a variety of finer geographical data become
available to the public, a wider range of options for working with
Geographic Information Systems (GIS) in conjunction with census
data, the most reliable and authoritative source of demographic
facts, closely follows. One common approach for creating gridded
population products involves dasymetric mapping, which re-
distributes census counts bounded at an administrative level onto
higher-resolution spatial units (Jia, Qiu, & Gaughan, 2014; Martin,
2011; Mennis, 2009). Traditionally, choropleth maps were
Jia), aegaughan@gmail.com
commonly used to visually highlight differences in population
counts at the administrative unit level. However, dasymetric
mapping has improved on traditional choropleth maps by
increasing the spatial variation and accuracy in which data are
mapped to a surface (Mennis, 2009). Dasymetric mapping tech-
niques may incorporate various ancillary data and range in so-
phistication from the use of areal weighting to more involved
statistical approaches (Martin, 2011; Mennis, 2009). Continually
refining and improving on these methods is important for creating
spatially-explicit information about variables of interest (i.e. human
population counts) that subsequently inform studies on pop-
ulations at risk (Tatem et al., 2012), transportation patterns (Linard
et al., 2012), healthcare resource allocation (Jia, Xierali, & Wang,
2015), and emergency management (Goodchild & Glennon, 2010).

For applications at regional or global scales, where spatial res-
olution of the gridded products are typically 100 m or greater,
available data sets include the Gridded Population of the World
(GPW) (Balk et al., 2006), Global Rural Urban Mapping Project
(GRUMP) (CIESIN, 2004), LandScan Global (Dobson, Bright,
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Coleman, Durfee, & Worley, 2000), LandScan USA model (Bhaduri,
Bright, Coleman, & Urban, 2007), and the WorldPop Project
(Stevens, Gaughan, Linard, & Tatem, 2015; Tatem et al., 2013).
However, for local-scale studies, it may be more appropriate to
generate a site-specific gridded population data set that takes
advantage of novel data sources such as parcel data (Jia et al., 2014;
Maantay, Maroko, & Herrmann, 2007; Xie, 2006).

Parcel boundaries, are a valuable independent data source for
revealing the underlying population distribution and assisting with
population re-distribution due to its direct relationship with pop-
ulation density (Jia et al., 2014). In a recent study, Jia et al. (2014)
produced a High- Gridded Population Surface (HGPS) based on
fine-scale parcel data for Alachua County, Florida. The study dem-
onstrates the viability of using fine-scale parcel data to increase the
accuracy of the distribution of population counts for specific, local-
scale objectives. However, land cover is still recognized as one of
the most useful sources of ancillary information for many popula-
tion products (Leyk, Buttenfield, Nagle, & Stum, 2013; Reibel &
Agrawal, 2007; Zandbergen, 2011; Zandbergen & Ignizio, 2010).
Accessibility and typically strong correlation of various land covers
(e.g. urban/built) to population distributions increases the appeal
for integrating land cover as an ancillary data source with dasy-
metric mapping approaches (McKee, Rose, Bright, Huynh, &
Bhaduri, 2015). In this study, it is hypothesized that the combina-
tion of parcel information and land cover data may further increase
the accuracy of a gridded population surface.

Considerations of estimation error still exist due to variation of
the population density on the same type of parcel and perhaps the
inherent error in census and/or parcel data collection, leading to
uncertainty in accurately redistributing census counts. In other
words, once an appropriate HGPS is created from census block
groups and aggregated over blocks that are spatially nested within
block groups, the aggregated estimates within blocks will have an
uncertain level of error. It is important to know how the accuracy of
population redistribution may be associated with the known in-
formation, which might enable us to better know the limitations of
the final population grid, and to potentially avoid or overcome
these limitations in similar products in the future.

By adopting different ways of combining parcel with land cover
classes, calculating the weight of the combined classes, and based
on which disaggregating population into different parcels, the best
strategy for improving the parcel-only HGPS (Jia et al., 2014) is
statistically identified. If land cover data are included in the best
strategy, our first hypothesis could be supported that integration of
land cover with parcel data improves the accuracy of the HGPS. In
addition, we examined underlying factors associated with the dif-
ferences between dasymetric results and census counts over
blocks, testing our second hypothesis that different demographic
and/or parcel proportions within blocks may correlate with varying
degrees of population redistribution error.

2. Study region, datasets and methods

Alachua County is located in the north part of Florida, a state
that comprises the southeastern panhandle of the U.S (Fig. 1). There
are a total of 155 block groups and 7382 blocks in Alachua County.
The total population in the county is 247,336, among which 82.1%
are over the age of 18, 69.6% are White, 20.3% are Blacks, 8.4% is
Hispanic, and 5.4% are Asian (U.S. Census Bureau, 2011).

2.1. Datasets

The U.S. Decennial Census data comprise three spatial aggre-
gation levels based on administrative units and the total population
counts within them (census tract, block group, and block). Themost
recent 2010 census population counts at the block and block group
levels are used. The parcel data contains the boundaries of parcels
in all 67 counties of Florida with associated tax information
including the property types of parcels (Florida Department of
Revenue, 2010). Although the parcel data in 2012 are available,
the data in 2010 are used for a temporal match with the Census
2010.

The National Land Cover Database (NLCD), with a spatial reso-
lution of 30 m, is the most commonly used derived land-cover
classification data source in the United States (Fry et al., 2011),
where four land-cover categories are defined by the percentage of
impervious surfaces, to depict most of the populated areas,
including open space (<20%), low intensity (20e50%), medium
intensity (>50e80%), and high intensity (>80e100%). Open space
regions include areas with some mixed constructed materials, but
mostly with vegetation in the form of lawn grasses, such as single
family homes, golf courses, parks, etc. Low and medium intensity
areas are both composed of constructed materials and vegetation
with various extents, where single family is the major type of
housing units. High intensity areas primarily consist of highly
developed areas associated with increased population densities.
The spatial patterns of four land-cover classes in Alachua County
are showed in Fig. 1.

2.2. Modeling approach

We adopt the empirical sampling procedure described by
Mennis (2003), where census blocks that are covered by primarily
one type land cover are used as population density training sam-
ples. Due to lack of census blocks completely covered by one
property-type, which is required by traditional empirical sampling,
a concept of eligible mono-type block is used for this analysis. With
eligible mono-type blocking, the area proportion of only one
dominating property-type is larger than 10% and the total propor-
tion of the remaining property-types is less than 0.1% (Jia et al.,
2014). In this study, land-cover classes from the NLCD are used to
refine the existing parcel-based HGPS, which means that land-
cover categories are used to subdivide given property-types into
several subtypes. Here a subtype is defined as a combination of a
given property-type and a given land-cover category, which applies
to all subsequent appearances of the word “subtype” in the rest of
this paper. If the centroids of all the parcels in an eligible mono-
type block are located in the same land-cover category, that
eligible mono-type block is further defined as an eligible mono-
subtype block. This level of detail in designating potential surface
areas for population density training is important for improving
model estimates at a fine scale.

Seven property-types presented in Alachua County (Jia et al.,
2014), including single family, mobile family, multi-family (�10
and <10 units), condominiums, mobile homes parks, and homes for
the aged, are predefined as residential property types, and from
these eligible mono-type blocks are selected. Representative cen-
troids of all residential parcels are extracted and superimposed on
the NLCD layer, so as to assign a land-cover category to each resi-
dential parcel centroid. Four land-cover categories are initially
defined as populated and coded as Class 21 (open space), 22 (low
intensity), 23 (medium intensity) and 24 (high intensity). It is
worth noting that while matching parcel centroids with land-cover
categories, the centroids of some residential parcels, mostly single
family, are located in other natural land cover classes such as shrub
and woody wetlands rather than the four populated land-cover
categories. This might be attributed to either the unavoidable
misclassification in NLCD, heavy coverage of vegetation around the
parcels, or mismatching between parcel and land cover data. All
these parcels are allocated as the fifth populated land-cover



Fig. 1. Alachua County, Florida. Four land-cover categories are defined by the percentage of impervious surfaces: open space (<20%), low intensity (20e50%), medium intensity
(>50e80%), and high intensity (>80e100%).
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category, coded as Class 25.
Each of five populated land-cover categories are initially

considered as separate categories. Each eligible mono-type block
with all included parcel centroids located in the same land-cover
category is assigned to that subtype (eligible mono-subtype block).
Three eligible mono-subtype blocks are considered as the mini-
mum number for calculating the population density for any sub-
type. We also consider the aggregation of the four initial populated
categories, merging the data into two coarse-level categories, Class
21-22 and Class 23-24, in order to enhance the numbers of eligible
mono-subtype blocks for more trustworthy population density
counts over subtypes.

The population density for each residential subtypewith at least
three eligible mono-subtype blocks or merged subtype is
calculated:

rv ¼
X
b2B

Pvb

,X
b2B

Avb (1)

where rv ¼ aggregate population density of (merged) subtype v,
Pvb¼ population count in block b dominated by (merged) subtype v,
Avb ¼ total area of the parcels in (merged) subtype vwithin block b,
and B encompasses all eligible mono-subtype blocks for (merged)
subtype v across the Alachua County. The entire process of the
dasymetric population redistribution is outlined in Fig. 2. More
details can be found in the study of Jia et al. (2014).
2.3. Sensitivity testing

For testing the sensitivity of the results to the selection of
population density and residential property-types, we 1) increase
the minimum sufficient number of eligible mono-subtype blocks to
five and ten versus three, 2) use eight officially defined residential
property-types populated in Alachua County (Florida Department
of Revenue, 2010), 3) use 17 property-types with at least three
eligible mono-type blocks in Alachua County, and lastly, 4) use 25
property-types with at least three eligible mono-type blocks for all
of Florida (Table 1). Empirical sampling is undertaken statewide for
calculating the population density for those property-types
without three eligible mono-type blocks within Alachua County.
The property-types and land-cover categories involved in different
strategies are summarized in Table 2.

The population counts in resulting grid cells from different
strategies are each re-aggregated at the block level and compared
to the original census population counts for each block. The abso-
lute value of the difference between re-aggregated and original
census counts over blocks is termed as absolute raw error (ARE).
The results from different strategies are compared with one



Fig. 2. A flowchart of dasymetric modeling showing all the steps of population being disaggregated from block groups to 30 � 30 m grid cells.
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another by calculating and comparing total absolute error (TAE)
over blocks, and root mean square error (RMSE) and coefficient of
variance (CV) over block groups (Jia et al., 2014). Lower values for
TAE, RMSE and CV represent better results. After a natural log
transformation is conducted to alleviate the skewness of the dis-
tribution of two groups of raw CVs, a t-test is used for comparing
the best resulting output with the original HGPS, in order to
determine if the improvement by integrating NLCD is significant, or
if the null hypothesis (H0) of no difference between the two groups
of CVs can be rejected (Jia et al., 2014; Tapp, 2010). An alternate
hypothesis (H1) is that the log-transformed CVs of the E-HGPS are
lower than those of the HGPS.

2.4. Factors associated with population redistribution

In this study we hypothesize that varying degrees of the error of
population re-distribution could be accounted for by the
demographic and/or parcel proportions within different blocks. The
relative degree of the error of redistribution is the response vari-
able, calculated by dividing absolute raw error (ARE) by census
counts within blocks over 4504 populated blocks in Alachua
County (with non-zero census counts). The selection of explanatory
variables is based on availability of demographic features in the U.S.
2010 Census, including the percent ethnicity, percentage of the
population over the age of 18, and occupied housing units within
blocks (Table 3). Other explanatory variables calculated during the
dasymetric process include the area ratio of each property-type
over blocks, which may shed light on the degree of stability/
instability of population density over some types of property. To
explore the correlations between the response variable and each
explanatory variable, we use the Spearman's rank correlation co-
efficient (Daniel, 1990). The Spearman's rank correlation is a mea-
sure of the directional association between two variables and was
deemed appropriate due to the non-Gaussian distribution of the



Table 1
Basic statistics and aggregate population density for all the property types involved in all 16 strategies.

Code Property type (subtype) Eligible mono-subtype block Summed population Summed area (km2) Aggregate densitye (persons/ha)

001a Single family 904 28,183 17.13 16
001&21-22 787 26,644 14.58 18
001&21 395 9966 6.27 16d

001&22 41 1004 0.41 24d

001&23-24 4 114 0.03 45
001&23 4 114 0.03 45d

001&24 e e e [45]d

001&25 103 1090 2.41 5d

002a Mobile home 43 272 1.08 3
002&21-22 8 134 0.26 5
002&21 7 113 0.25 4d

002&22 e e e [5]d

002&23-24 e e e [3]
002&23 e e e [3]d

002&24 e e e [3]d

002&25 35 138 0.82 2d

003a Multi-fml (�10) 132 12,657 1.50 85
003&21-22 22 2167 0.30 72
003&21 5 594 0.13 46d

003&22 16 1485 0.16 91d

003&23-24 15 2150 0.28 78
003&23 14 1338 0.24 55d

003&24 1 812 0.03 [78]d

003&25 94 8154 0.91 90d

008a Multi-fml (<10) 12 461 0.09 52
008&21-22 11 458 0.09 52
008&21 4 103 0.03 39d

008&22 2 60 0.01 [52]d

008&23-24 e e e [52]
008&23 e e e [52]d

008&24 e e e [52]d

008&25 1 3 0.001 [52]d

004a Condominiums 21 1134 0.06 176
004&21-22 16 684 0.05 144
004&21 7 314 0.02 152d

004&22 2 29 0.002 [144]d

004&23-24 e e e [176]
004&23 e e e [176]d

004&24 e e e [176]d

004&25 3 281 0.01 272d

028b Mobile parks 63 2505 0.77 32
028&21-22 10 456 0.14 33
028&21 4 106 0.04 29d

028&22 6 350 0.10 34d

028&23-24 e e e [32]
028&23 e e e [32]d

028&24 e e e [32]d

028&25 53 2049 0.63 32d

074b Aged Home 9 862 0.40 22
074&21-22 2 156 0.15 [22]
074&21 2 156 0.15 [22]d

074&22 e e e [22]d

074&23-24 1 117 0.007 [22]
074&23 1 117 0.007 [22]d

074&24 e e e [22]d

074&25 6 589 0.24 25d

000a Vacant 4 34 0.04 8
007a Miscellaneous 2 13 0.02 6
009a Undefined 11 75 0.05 16
012b Mixed use 4 14 0.02 8
071b Church 6 23 0.06 4
080b Undefined 8 599 0.26 23
084b College 13 3707 3.36 11

084&21-22 2 583 0.32 18
084&21 2 583 0.32 18
084&25 11 3124 3.04 10

086b County 9 178 1.74 1
086&21-22 4 167 0.05 36
086&21 2 48 0.02 25
086&22 1 29 0.008 37
086&25 5 11 1.70 6

087b State 14 3069 3.30 9
087&21-22 2 1952 0.66 30
087&21 1 3 0.49 0.1
087&25 12 1117 2.65 4
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Table 1 (continued )

Code Property type (subtype) Eligible mono-subtype block Summed population Summed area (km2) Aggregate densitye (persons/ha)

089b Municipal 3 166 0.04 40
010c Vacant 39 1097 0.45 24
011c Store 15 1011 0.2 51
018c Office building 5 176 0.09 19
050c Agricultural 124 535 21.15 30
072c Private school 7 1817 0.21 87
075c Charitable 1 1 0.0002 46
083c Public school 7 162 0.24 7
088c Federal 79 4345 18.93 2

[ ] Population density replaced with that of the coarser-level class.
a Residential property-types officially defined and also populated in Alachua County.
b Non-residential property-types but populated in Alachua County.
c Non-residential property-types populated in Florida instead of Alachua County.
d Population density of each subtype used in the subgroup 1.3.
e Aggregated density (unit: persons/ha) ¼ summed population/(summed area � 100).

Table 2
Descriptions of 16 strategies for calculating population density.

Group Description

1.1 Using 7 residential property-typesa

1.2 Using 7 residential property-types and 5 land-cover categories; the minimum sufficient number of eligible mono-subtype blocks is 3
1.3 Using 7 residential property-types and 3 merged land-cover categories; the minimum sufficient number of eligible mono-subtype blocks is 3
2.1 Using 7 residential property-types (same as 1.1)
2.2 Using 7 residential property-types and 5 land-cover categories; the minimum sufficient number of eligible mono-subtype blocks is 5
2.3 Using 7 residential property-types and 3 merged land-cover categories; the minimum sufficient number of eligible mono-subtype blocks is 5
3.1 Using 7 residential property-types (same as 1.1)
3.2 Using 7 residential property-types and 5 land-cover categories; the minimum sufficient number of eligible mono-subtype blocks is 10
3.3 Using 7 residential property-types and 3 merged land-cover categories; the minimum sufficient number of eligible mono-subtype blocks is 10
4.1 Using 8 residential property-typesb

4.2 Using 8 residential property-types and 5 land-cover categories
4.3 Using 8 residential property-types and 3 merged land-cover categories
5.1 Using all 17 populated property-types in Alachuac

5.2 Using all 17 populated property-types in Alachua and 5 land-cover categories
5.3 Using all 17 populated property-types in Alachua and 3 merged land-cover categories
6.1 Using all 25 populated property-types in Floridad

6.2 Using all 25 populated property-types in Florida and 5 land-cover categories
6.3 Using all 25 populated property-types in Florida and 3 merged land-cover categories

a 001, 002, 003, 004, 008, 028 and 074 in Table 1.
b Eight property-types with a superscript of 1 in Table 1.
c All property-types with a superscript of 1 or 2 in Table 1.
d All property-types in Table 1.
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data. The statistical test identifies the strength of a relationship
between the error of redistribution and various explanatory vari-
ables. We also explored the use of the alternative technique (Ken-
dall tau rank correlation coefficient) which produced similar results
and thus present findings only for the Spearman's rank test.
3. Results

3.1. Population density

Table 1 shows that integrating land-cover categories with resi-
dential property-types has the largest influence on the population
density in single family (ranging from 16 persons/ha in open space
to 45 persons/ha in medium intensity), multi-family with more
than 10 units (ranging from 46 persons/ha in open space to 91
persons/ha in low intensity), and condominiums (ranging from 144
persons/ha in low intensity to 272 persons/ha in other natural land
types). Most of the parcels in mobile home, multi-family
(<10 units), mobile parks and aged home are located in low in-
tensity regions. Therefore, the population density in these
property-types is stable over all land-cover types.
When the number of eligible mono-subtype blocks in a given
subtype is less than three, the population density of its merged
subtype (the coarser-level class) is substituted. If there are still
insufficient eligible mono-subtype blocks for the merged subtype,
the general population density of that property type, without being
split into land-cover categories, is substituted. For example, in
Table 1, the population density in multi-family (�10 units) in Class
23-24 (003 & 23-24) was substituted for that in multi-family
(�10 units) in Class 24 (003 & 24), as there were less than three
eligible mono-subtype blocks in that class. An exception, however,
was that if less than three eligible mono-subtype blocks existed in
the mobile home Class 23e24 (002 & 23-24), then the population
density in mobile home (002), regardless of land-cover classes, was
substituted for that in Class 23 (002& 23), 24 (002& 24) and 23e24
(002 & 23-24).
3.2. Statistical comparison among outputs

The first subgroup in each group (x.1), generated based on
property-types without mixing with any land-cover classes, is
considered as a “control” group in contrast to the other “case”



Table 3
Strength of the relationship between estimation error and different demographic
and parcel components (explanatory variables) over 4504 populated blocks.

Variable Description Spearman's

Block (obtained from census, unit: %)
Pct_over18 Percentage of the population over the age of 18 0.113***

Pct_occu Percentage of housing units occupied 0.059***

Ethnicity (obtained from census, unit: %)
Pct_WHITE Percentage of Whites 0.065***

Pct_BLACK Percentage of Blacks �0.086***

Pct_HISPANIC Percentage of Hispanics �0.156***

Pct_ASIAN Percentage of Asians �0.082***

Pct_AMERI Percentage of American Indians/Alaska Natives �0.083***

Pct_HAWN Percentage of Hawaiians/Pacific Islanders �0.036*

Ratio_SGL Area ratio of single family �0.283***

Ratio_MLT Area ratio of multi-family (�10 units) 0.005
Ratio_MLTL Area ratio of multi-family (<10 units) �0.104***

Ratio_CDMN Area ratio of condominiums �0.022
Ratio_MBL Area ratio of mobile homes 0.045**

Ratio_MBLP Area ratio of mobile home parks 0.013
Ratio_RTM Area ratio of retirement homes �0.009
Ratio_AGE Area ratio of homes for the aged �0.013
Ratio_MSLN Area ratio of miscellaneous residential property �0.009
Ratio_UDF Area ratio of undefined residential property 0.037*

Ratio_VCTR Area ratio of vacant residential property 0.001
Ratio_VCTC Area ratio of vacant commercial property 0.013
Ratio_VCTD Area ratio of vacant industrial property 0.027
Ratio_VCTT Area ratio of vacant institutional property 0.015
Ratio_VCTG Area ratio of government property 0.013
Ratio_STOR Area ratio of stores �0.019
Ratio_MIX Area ratio of mixed use buildings �0.014
Ratio_OFC Area ratio of office buildings �0.002
Ratio_CHUR Area ratio of churches �0.018
Ratio_PRIS Area ratio of private schools �0.014
Ratio_PUBS Area ratio of public schools �0.010
Ratio_COLG Area ratio of colleges 0.072***

Ratio_PRIH Area ratio of private hospitals 0.020
Ratio_PUBH Area ratio of public hospitals �0.001
Ratio_CHAR Area ratio of charitable property �0.020
Ratio_SANI Area ratio of sanitariums �0.026
Ratio_AGRI Area ratio of agricultural property �0.012
Ratio_COUT Area ratio of county property �0.008
Ratio_STAT Area ratio of state property 0.035*

Ratio_FEDE Area ratio of federal property 0.006
Ratio_MUNI Area ratio of municipal property �0.003

*p < 0.05, **p < 0.01, ***p < 0.001.
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subgroups (x.2 and x.3) in the same group, where x represents 1e6
(Table 4). The second subgroup (x.2) uses five individual categories
(Class 21, 22, 23, 24, and 25) while the third subgroup (x.3) uses
three merged categories (Class 21e22, 23e24, and 25). The
Table 4
Total absolute error (TAEs) between re-aggregated and original census counts.

Group All Unpopulated Populated Residential Non-residential

1.1 133,641 7208 126,434 120,325 13,316
1.2 120,096 7323 112,774 106,780 13,316
1.3 118,133 7263 110,870 104,817 13,316
2.1 133,641 7208 126,434 120,325 13,316
2.2 120,182 7333 112,849 106,866 13,316
2.3 118,372 7284 111,089 105,056 13,316
3.1 133,641 7208 126,434 120,325 13,316
3.2 119,864 7354 112,509 106,548 13,316
3.3 118,600 7287 111,313 105,284 13,316
4.1 137,417 7631 129,786 120,586 16,831
4.2 127,426 8336 119,090 110,595 16,831
4.3 125,413 8233 117,180 108,582 16,831
5.1 153,040 19,797 133,243 129,157 23,883
5.2 148,112 21,008 127,104 123,635 24,477
5.3 146,053 20,860 125,193 121,608 24,445
6.1 161,809 22,450 139,359 136,134 25,675
6.2 159,037 23,925 135,112 132,459 26,578
6.3 156,793 23,716 133,077 130,321 26,472

The Group 1.3 produced the minimum total absolute error (TAE) of population
estimation.
descriptive statistics and aggregate population density for all the
property types and subtypes (with three or more eligible mono-
subtype blocks in Alachua County) involved in all 16 strategies
are demonstrated in Table 1.

Sixteen strategies for population density settings are separately
used to generate the HGPSs in Alachua County, amongwhich Group
1.1 is the original HGPS from Jia et al. (2014). After disaggregating
the population counts from block groups to grid cells and re-
aggregating them on block level, the TAEs between re-aggregated
and original census counts over blocks are calculated and
compared with one another under five categories, including all the
blocks (7382), unpopulated (2878), populated (4504), residential
(5203) and non-residential blocks (2179) (Table 4).

Comparing six groups as awhole, we find that the TAEs in Group
1e3 are generally smaller than Group 4e6, among which the
subgroup 1.3 outperforms all other subgroups in all types of blocks.
An exception is when compared to the original HGPS (Group 1.1) in
unpopulated blocks. This confirms that using the seven property-
types is a better selection than using all officially defined residen-
tial property-types (Group 4) that are additionally superior to the
inclusion of non-residential property-types (Group 5 and 6).
Substituting statewide population density for missing countywide
population density further increases the error in Group 5,
compared to Group 6. The second (x.2) and third subgroups (x.3)
both generate smaller TAEs than the first subgroups (x.1) in all six
groups, which suggests that land-cover categories do bring
improvement to the parcel-based population products. The third
subgroups particularly outperform the second subgroups in all six
groups, which indicates merging land-cover categories is a better
way to integrate the land-cover categories from NLCD with parcel
data than individual land-cover categories. The mean RMSEs and
CVs consistently demonstrate the same findings (Table 5). The final
output of dasymetric mapping using the method with the best
accuracy is subgroup 1.3 and is named the Enhanced HGPS (E-
HGPS).

The log-transformed CVs of the E-HGPS (subgroup 1.3) were
statistically compared with those of the original HGPS (subgroup
1.1) by a simple comparison of means t-test. There is a difference in
the log-transformed CVs for the E-HGPS (M ¼ �0.227, SD ¼ 0.785)
and HGPS (M¼�0.122, SD¼ 0.823); t(308)¼ 1.357, p¼ 0.176 (two-
tailed). A one-tailed significance level of 0.088, although not sig-
nificant enough at a 95% confidence level, still allows us to reject
the null hypothesis, and accept the alternate hypothesis at a 90%
confidence level that the log-transformed CVs of the E-HGPS are
Table 5
Comparison of the accuracy of high-resolution population products generated by
different strategies.

Group Mean RMSE Mean CV Median CV

1.1 64.40 1.22 0.90
1.2 60.26 1.10 0.85
1.3 59.22 1.08 0.72
2.1 64.40 1.22 0.90
2.2 60.15 1.10 0.85
2.3 59.27 1.08 0.86
3.1 64.40 1.22 0.90
3.2 59.93 1.10 0.86
3.3 59.31 1.08 0.86
4.1 65.51 1.24 0.95
4.2 61.50 1.16 0.89
4.3 60.59 1.14 0.89
5.1 69.92 1.49 1.13
5.2 68.80 1.48 1.16
5.3 67.53 1.46 1.13
6.1 66.85 1.43 1.11
6.2 64.67 1.41 1.08
6.3 63.53 1.39 1.04
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lower than those of the HGPS.

3.3. Error analysis

The signs and values of Spearman's coefficients indicate how
and to what extent each explanatory variable is correlated with the
estimation error (Table 3). The area ratio of single family demon-
strates the strongest correlation across all the explanatory variables
tested, where the negative sign means the blocks with a higher
percentage of single family units normally have a lower percentage
of estimation error. Other significant factors showing a relatively
stronger correlation with estimation error (Spearman's coefficient
>0.1) include the percentages of Hispanics (�0.156) and the pop-
ulation over the age of 18 (0.113), as well as the area ratio of multi-
family (<10 units) (�0.104). That is to say, the blocks with a larger
percentage of the population over the age of 18 tend to have a
higher percentage of estimation error, while the blocks with a
higher percentage of Hispanics and a higher area ratio of multi-
family (<10 units) normally have a lower percentage of estima-
tion error. The factors showing a weak but significant positive
correlation include the percentages of whites, housing units occu-
pied, and the area ratios of mobile homes, colleges, undefined
residential property, and state property. The percentages of other
races (blacks, Asians, American Indians/Alaska Natives, and Ha-
waiians/Pacific Islanders) all show a weak but significant negative
correlation with estimation error.

4. Discussions

The findings in this study support our two hypotheses that 1)
the integration of land cover and parcel-based data further in-
creases the overall accuracy of the gridded population surface, and
2) some demographic and parcel components within blocks are
significantly correlated with the error resulting from population re-
distribution. The best estimated model is subgroup 1.3 (E-HGPS)
which includes seven residential property-types (single family,
mobile family, multi-family (�10 and <10 units), condominiums,
mobile homes parks, and homes for the aged), three merged land-
cover categories (heavy vegetation, 0e50% and >50e100% imper-
vious surface), and requiring a minimum of three eligible blocks for
training the population density for each combination of land cover
and parcel categories. The study area of this study, comprising 155
block groups in Alachua County, limits to some degree the statis-
tical comparison of the E-HGPS and HGPS due to a small sample
size. While the improvement of the E-HGPS over the HGPS is not
significant at 95% confidence level, the significance at the 90%
confidence level still gives a directional sense to the results., In
addition, the findings corroborate the approach to determining the
residential property-types involved in the previous study (Jia et al.,
2014).

According to the results from the non-parametric correlation
approach, the percentage of the population over 18 influences the
ratio of estimation error in the positive direction. It might imply
that the population per unit of living area for adults is more het-
erogeneous across the county due perhaps to uneven geographical
distribution of population, varied family sizes and/or housing oc-
cupancy rate, making it difficult to capture by county-wide
empirical sampling. In addition, higher occupancy rates for hous-
ing properties increase the uncertainty in population estimation
which is not unexpected. Likewise, the area ratio of some property-
types over blocks (mobile homes, college, undefined residential
property, and state property) is positively correlated with the error
ratio, which means that the population density in these property-
types is relatively unstable across the county. Added error could
also be from larger blocks which include more parcels with more
complexity in pattern distribution of population counts. Results
from the correlation analysis provide many potential avenues for
exploration in future work on both modeling population distribu-
tion and inform considerations in collection and processing efforts
of both census and parcel data. Some property-types in the sense of
utility are not supposed to be habitable, such as private/public
school and hospital. However, non-zero population counts have
been assigned to a certain number of blocks completely and only
including each of those property-types. Hence, despite being
excluded from a list of residential property-types, they still nega-
tively influence the assessment of our final product by adding un-
true error to the overall error (Type I error). Overcoming these
issues requires mutual efforts and coordination among relevant
governmental agencies.

The accuracy of classification in NLCD and parcel data is a lim-
itation in this study, with the accuracy of the NLCD well noted in
other studies (Jia et al., 2014; Smith, Zhou, Cadenasso, Grove, &
Band, 2010). Methodologically, assigning all parcels located
outside the four primary populated land-covers to one class (Class
25) may result in lower accuracy in the population density of that
mixed class, given that a considerable number (42.7%) of the
habitable parcels in Alachua County are classified into Class 25. In
addition, individual land-cover categories with an approximate
percentage of impervious surface are merged at the expense of
losing detail in land-cover type. This is due primarily to insufficient
numbers of eligible mono-subtype blocks for population density
training in Alachua County and could contribute to error in the
modeling process that relies on five individual land-cover cate-
gories. As such, future work that is able to incorporate a larger
number of eligible mono-subtype blocks for each combination of
individual land-cover and parcel categories may provide more
robust results than the aggregated approach found in this study.

It is worth mentioning that the currently up-to-date NLCD 2011
was not available at the time of conducting this study, but is
available now. The differences between NLCD 2006 and 2011 in
Alachua County were examined by Kappa statistics (Viera &
Garrett, 2005), and they were found to be minimal. Following the
superior strategy in this study to consider Class 21 and 22, Class 23
and 24, and all other classes outside of these four classes as three
independent categories, 94.7% of 87,753 cells have been stable over
time with a weighted kappa of 0.74. According to the percentage of
unchanged habitable areas and the associated kappa value, the
variations in Alachua County between 2006 and 2011 are assumed
not to significantly affect the results in this study.

The substitution of population density from state-wide empir-
ical sampling for missing population density in some property-
types in Alachua County lowers the overall accuracy of estima-
tion. This implies that the population density over similar property
types across Florida may vary county by county due to geographic
location and socioeconomic status. Therefore, despite the potential
effectiveness of using a state-wide sampling approach, it should be
used with caution. This also applies to considerations in comparing
and extending the approach to other states than Florida. For
example, property taxes in Florida are some of the highest in the
country, which might affect population density over the same acre.

Despite these considerations, this study lays a solid groundwork
of better understanding how land cover and parcel data can best be
integrated for producing gridded population datasets at a fine scale.
Futureworkwill build on this by investigating an increased number
of land-cover categories as associated with various residential
property-types. In addition, increasing the geographic range of the
study will enable a large sample size across combinations of land
cover and parcel types. Alternatively, the approach could be tested
in a larger urban environment that has a large range in land cover
types. Final products from these efforts may be assessed relative to
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other datasets at comparable spatial resolutions and updated with
more contemporary derived data products as they become
available.

In summary, we incorporate land-cover with parcel data
through a dasymetric modeling approach to better understand
population density distributions across Alachua County. The
30 � 30 m E-HGPS produced in this study arguably increases the
accuracy of spatially disaggregated population from using parcel
data exclusively, and provides a positive step forward towards
better identifying the nuances of intra-class variation within pop-
ulation density counts. The potential uses of this product in prac-
tical applications (e.g. emergency management, health resource
allocations, etc.) make small increases more important. For
example, knowing how many people live in individual housing
units is a necessary precondition formeasuring health disparities in
per capita accessibility to health/hospital resources in a road
network-based real world. The U.S.-wide coverage of products such
as the NLCD product and the growing availability of parcel data
across States provide the necessary framework to expand the ap-
proaches outlined in this paper to future work at regional and
potentially national scales.
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