44 research outputs found
Green Tea Polyphenol EGCG Sensing Motif on the 67-kDa Laminin Receptor
BACKGROUND: We previously identified the 67-kDa laminin receptor (67LR) as the cell-surface receptor conferring the major green tea polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) responsiveness to cancer cells. However, the underlying mechanism for interaction between EGCG and 67LR remains unclear. In this study, we investigated the possible role of EGCG-67LR interaction responsible for its bioactivities. METHODOLOGY/PRINCIPAL FINDINGS: We synthesized various peptides deduced from the extracellular domain corresponding to the 102-295 region of human 67LR encoding a 295-amino acid. The neutralizing activity of these peptides toward EGCG cell-surface binding and inhibition of cancer cell growth were assayed. Both activities were inhibited by a peptide containing the 10-amino acid residues, IPCNNKGAHS, corresponding to residues 161-170. Furthermore, mass spectrometric analysis revealed the formation of a EGCG-LR161-170 peptide complex. A study of the amino acid deletion/replacement of the peptide LR161-170 indicated that the 10-amino acid length and two basic amino acids, K(166) and H(169), have a critical role in neutralizing EGCG's activities. Moreover, neutralizing activity against the anti-proliferation action of EGCG was observed in a recombinant protein of the extracellular domain of 67LR, and this effect was abrogated by a deletion of residues 161-170. These findings support that the 10 amino-acid sequence, IPCNNKGAHS, might be the functional domain responsible for the anti-cancer activity of EGCG. CONCLUSIONS/SIGNIFICANCE: Overall, our results highlight the nature of the EGCG-67LR interaction and provide novel structural insights into the understanding of 67LR-mediated functions of EGCG, and could aid in the development of potential anti-cancer compounds for chemopreventive or therapeutic uses that can mimic EGCG-67LR interactions
The first report of RPSA polymorphisms, also called 37/67 kDa LRP/LR gene, in sporadic Creutzfeldt-Jakob disease (CJD)
<p>Abstract</p> <p>Background</p> <p>Although polymorphisms of <it>PRNP</it>, the gene encoding prion protein, are known as a determinant affecting prion disease susceptibility, other genes also influence prion incubation time. This finding offers the opportunity to identify other genetic or environmental factor (s) modulating susceptibility to prion disease. Ribosomal protein SA (<it>RPSA</it>), also called 37 kDa laminin receptor precursor (LRP)/67 kDa laminin receptor (LR), acts as a receptor for laminin, viruses and prion proteins. The binding/internalization of prion protein is dependent for LRP/LR.</p> <p>Methods</p> <p>To identify other susceptibility genes involved in prion disease, we performed genetic analysis of <it>RPSA</it>. For this case-control study, we included 180 sporadic Creutzfeldt-Jakob disease (CJD) patients and 189 healthy Koreans. We investigated genotype and allele frequencies of polymorphism on <it>RPSA </it>by direct sequencing or restriction fragment length polymorphism (RFLP) analysis.</p> <p>Results</p> <p>We observed four single nucleotide polymorphisms (SNPs), including -8T>C (rs1803893) in the 5'-untranslated region (UTR) of exon 2, 134-32C>T (rs3772138) in the intron, 519G>A (rs2269350) in the intron and 793+58C>T (rs2723) in the intron on the <it>RPSA</it>. The 519G>A (at codon 173) is located in the direct PrP binding site. The genotypes and allele frequencies of the <it>RPSA </it>polymorphisms showed no significant differences between the controls and sporadic CJD patients.</p> <p>Conclusion</p> <p>These results suggest that these <it>RPSA </it>polymorphisms have no direct influence on the susceptibility to sporadic CJD. This was the first genetic association study of the polymorphisms of <it>RPSA </it>gene with sporadic CJD.</p
The Cellular Prion Protein Interacts with the Tissue Non-Specific Alkaline Phosphatase in Membrane Microdomains of Bioaminergic Neuronal Cells
BACKGROUND: The cellular prion protein, PrP(C), is GPI anchored and abundant in lipid rafts. The absolute requirement of PrP(C) in neurodegeneration associated to prion diseases is well established. However, the function of this ubiquitous protein is still puzzling. Our previous work using the 1C11 neuronal model, provided evidence that PrP(C) acts as a cell surface receptor. Besides a ubiquitous signaling function of PrP(C), we have described a neuronal specificity pointing to a role of PrP(C) in neuronal homeostasis. 1C11 cells, upon appropriate induction, engage into neuronal differentiation programs, giving rise either to serotonergic (1C11(5-HT)) or noradrenergic (1C11(NE)) derivatives. METHODOLOGY/PRINCIPAL FINDINGS: The neuronal specificity of PrP(C) signaling prompted us to search for PrP(C) partners in 1C11-derived bioaminergic neuronal cells. We show here by immunoprecipitation an association of PrP(C) with an 80 kDa protein identified by mass spectrometry as the tissue non-specific alkaline phosphatase (TNAP). This interaction occurs in lipid rafts and is restricted to 1C11-derived neuronal progenies. Our data indicate that TNAP is implemented during the differentiation programs of 1C11(5-HT) and 1C11(NE) cells and is active at their cell surface. Noteworthy, TNAP may contribute to the regulation of serotonin or catecholamine synthesis in 1C11(5-HT) and 1C11(NE) bioaminergic cells by controlling pyridoxal phosphate levels. Finally, TNAP activity is shown to modulate the phosphorylation status of laminin and thereby its interaction with PrP. CONCLUSION/SIGNIFICANCE: The identification of a novel PrP(C) partner in lipid rafts of neuronal cells favors the idea of a role of PrP in multiple functions. Because PrP(C) and laminin functionally interact to support neuronal differentiation and memory consolidation, our findings introduce TNAP as a functional protagonist in the PrP(C)-laminin interplay. The partnership between TNAP and PrP(C) in neuronal cells may provide new clues as to the neurospecificity of PrP(C) function
Extraribosomal functions associated with the C terminus of the 37/67 kDa laminin receptor are required for maintaining cell viability
The 37/67 kDa laminin receptor (LAMR) is a multifunctional protein, acting as an extracellular receptor, localizing to the nucleus, and playing roles in rRNA processing and ribosome assembly. LAMR is important for cell viability; however, it is unclear which of its functions are essential. We developed a silent mutant LAMR construct, resistant to siRNA, to rescue the phenotypic effects of knocking down endogenous LAMR, which include inhibition of protein synthesis, cell cycle arrest, and apoptosis. In addition, we generated a C-terminal-truncated silent mutant LAMR construct structurally homologous to the Archaeoglobus fulgidus S2 ribosomal protein and missing the C-terminal 75 residues of LAMR, which displays more sequence divergence. We found that HT1080 cells stably expressing either silent mutant LAMR construct still undergo arrest in the G1 phase of the cell cycle when treated with siRNA. However, the expression of full-length silent mutant LAMR rescues cell viability, whereas the expression of the C-terminal-truncated LAMR does not. Interestingly, we also found that both silent mutant constructs restore protein translation and localize to the nucleus. Our findings indicate that the ability of LAMR to regulate viability is associated with its C-terminal 75 residues. Furthermore, this function is distinct from its role in cell proliferation, independent of its ribosomal functions, and may be regulated by a nonnuclear localization
Inoculation of Scrapie with the Self-Assembling RADA-Peptide Disrupts Prion Accumulation and Extends Hamster Survival
Intracerebral inoculation of 263K Scrapie brain homogenate (PrPsc) with a self-assembling RADA-peptide (RADA) significantly delayed disease onset and increased hamster survival. Time of survival was dependent on the dose of RADA and pre-incubation with PrPsc prior to inoculation. RADA treatment resulted in the absence of detectable PrPsc at 40 d followed by an increased rate of PrPsc accumulation at 75 d up to sacrifice. In all PrPsc inoculated animals, clinical symptoms were observed ∼10 d prior to sacrifice and brains showed spongiform degeneration with Congo red positive plaques. A time-dependent increase in reactive gliosis was observed in both groups with more GFAP detected in RADA treated animals at all time points. The PrP protein showed dose-dependent binding to RADA and this binding was competitively inhibited by Congo Red. We conclude that RADA disrupts the efficacy of prion transmission by altering the rate of PrPsc accumulation. This is the first demonstration that a self-assembling biomolecular peptide can interact with PrPsc, disrupt the course of Scrapie disease process, and extend survival
Interactions Between Laminin Receptor and the Cytoskeleton During Translation and Cell Motility
Human laminin receptor acts as both a component of the 40S ribosomal subunit to mediate cellular translation and as a cell surface receptor that interacts with components of the extracellular matrix. Due to its role as the cell surface receptor for several viruses and its overexpression in several types of cancer, laminin receptor is a pathologically significant protein. Previous studies have determined that ribosomes are associated with components of the cytoskeleton, however the specific ribosomal component(s) responsible has not been determined. Our studies show that laminin receptor binds directly to tubulin. Through the use of siRNA and cytoskeletal inhibitors we demonstrate that laminin receptor acts as a tethering protein, holding the ribosome to tubulin, which is integral to cellular translation. Our studies also show that laminin receptor is capable of binding directly to actin. Through the use of siRNA and cytoskeletal inhibitors we have shown that this laminin receptor-actin interaction is critical for cell migration. These data indicate that interactions between laminin receptor and the cytoskeleton are vital in mediating two processes that are intimately linked to cancer, cellular translation and migration
Expression and Membrane Topology of Anopheles gambiae Odorant Receptors in Lepidopteran Insect Cells
A lepidopteran insect cell-based expression system has been employed to express three Anopheles gambiae odorant receptors (ORs), OR1 and OR2, which respond to components of human sweat, and OR7, the ortholog of Drosophila's OR83b, the heteromerization partner of all functional ORs in that system. With the aid of epitope tagging and specific antibodies, efficient expression of all ORs was demonstrated and intrinsic properties of the proteins were revealed. Moreover, analysis of the orientation of OR1 and OR2 on the cellular plasma membrane through the use of a novel ‘topology screen’ assay and FACS analysis demonstrates that, as was recently reported for the ORs in Drosophila melanogaster, mosquito ORs also have a topology different than their mammalian counterparts with their N-terminal ends located in the cytoplasm and their C-terminal ends facing outside the cell. These results set the stage for the production of mosquito ORs in quantities that should permit their detailed biochemical and structural characterization and the exploration of their functional properties
Interactome Analyses Identify Ties of PrPC and Its Mammalian Paralogs to Oligomannosidic N-Glycans and Endoplasmic Reticulum-Derived Chaperones
The physiological environment which hosts the conformational conversion of the cellular prion protein (PrPC) to disease-associated isoforms has remained enigmatic. A quantitative investigation of the PrPC interactome was conducted in a cell culture model permissive to prion replication. To facilitate recognition of relevant interactors, the study was extended to Doppel (Prnd) and Shadoo (Sprn), two mammalian PrPC paralogs. Interestingly, this work not only established a similar physiological environment for the three prion protein family members in neuroblastoma cells, but also suggested direct interactions amongst them. Furthermore, multiple interactions between PrPC and the neural cell adhesion molecule, the laminin receptor precursor, Na/K ATPases and protein disulfide isomerases (PDI) were confirmed, thereby reconciling previously separate findings. Subsequent validation experiments established that interactions of PrPC with PDIs may extend beyond the endoplasmic reticulum and may play a hitherto unrecognized role in the accumulation of PrPSc. A simple hypothesis is presented which accounts for the majority of interactions observed in uninfected cells and suggests that PrPC organizes its molecular environment on account of its ability to bind to adhesion molecules harboring immunoglobulin-like domains, which in turn recognize oligomannose-bearing membrane proteins
The 37-kDa/67-kDa laminin receptor acts as a receptor for infectious prions and is inhibited by polysulfated glycanes.
BACKGROUND: Recently, we showed that the 37-kDa/67-kDa laminin receptor (LRP/LR) acts as the receptor of the cellular prion protein. METHODS: For the present study, we investigated the binding of the murine scrapie prion protein (moPrP27-30) to baby hamster kidney (BHK) cells, using the Semliki Forest virus system. RESULTS: The enhanced binding of moPrP27-30 to BHK cells expressing moLRP::FLAG was inhibited by the LRP/LR-specific antibody W3, which suggests that LRP/LR acts as a receptor for the scrapie form of the prion protein, PrP(Sc). This finding was confirmed by a parallel study that showed that bovine prions are internalized by human enterocytes via LRP/LR. The heparan sulfate mimetics HM5004 and HM2602 reduced PrP27-30 binding to moLRP-expressing cells to approximately 30% and approximately 20%, respectively, at a concentration of 10 microg/mL, whereas pentosan polysulfate (SP54) and phycarin sulfate (PS3) both reduced the binding to approximately 40% at a concentration of 100 microg/mL. CONCLUSIONS: We suggest that the inhibition reported elsewhere of PrP(Sc) synthesis and the incubation times prolonged in rodent models by these sulfated glycans are due to the inhibition of the LRP/LR-dependent binding of prions to the target cells