220 research outputs found

    Fate of Irgarol 1051, diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints

    Get PDF
    Two major antifouling biocides used worldwide, Irgarol 1051 and diuron, and their degradation products in Shoreham Harbour and Brighton Marina, UK were studied during 2003-2004. The highest concentrations of Irgarol 1051 were 136 and 102 ng L(-1) in water and 40 and 49 ng g(-1) dry weight in sediments for Shoreham Harbour and Brighton Marina, respectively. As the degradation product of Irgarol 1051, M1 was also widespread, with the highest concentration of 59 ng L(-1) in water and 23 ng g(-1) in sediments in Shoreham Harbour, and 37 ng L(-1) in water and 5.6 ng g(-1) in sediments in Brighton Marina. The target compounds showed enhanced concentrations during the boating season (May-July), when boats were being re-painted (January-February), and where the density of pleasure crafts was high. Overall, the concentration of Irgarol 1051 decreased significantly from late 2000 to early 2004, indicating the effectiveness of controlling its concentrations in the marine environment following restricted use. Diuron was only detected in 14% of water samples, and mostly absent from sediment samples

    Diuron biodegradation in activated sludge batch reactors under aerobic and anoxic conditions

    Get PDF
    Removal Fate Runoff waters Phenylureas a b s t r a c t Diuron biodegradation was studied in activated sludge reactors and the impacts of aerobic and anoxic conditions, presence of supplemental substrate and biomass acclimatization on its removal were investigated. Diuron and three known metabolites, namely DCPMU (1-(3,4-dichlorophenyl)-3-methylurea), DCPU (1-3,4-dichlorophenylurea) and DCA (3,4-dichloroaniline), were extracted by solid-phase extraction (dissolved phase) or sonication (particulate phase) and determined using High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD). During the experiments only a minor part of these compounds was associated with the suspended solids. Under aerobic conditions, almost 60% of Diuron was biodegraded, while its major metabolite was DCA. The existence of anoxic conditions increased Diuron biodegradation to more than 95%, while the major metabolite was DCPU. Mass balance calculation showed that a significant fraction of Diuron is mineralized or biotransformed to other unknown metabolites. The presence of low concentrations of supplemental substrate did not affect Diuron biodegradation, whereas the acclimatization of biomass slightly accelerated its elimination under anoxic conditions. Calculation of halflives showed that under aerobic conditions DCPMU, DCPU and DCA are biodegraded much faster than the parent compound. In the future, the sequential use of anoxic and aerobic conditions could provide sufficient removal of Diuron and its metabolites from runoff waters. ª 2008 Elsevier Ltd. All rights reserved. Introduction The presence of pesticides in the environment is a matter of particular concern for the conservation of ecosystems and the protection of human health. Among the several classes of pesticides, Diuron, N-(3,4-dichlorophenyl)-N,N-dimethylurea, is extensively used on many agricultural crops and non-crop areas at application rates up to 3.0 kg ha À1 year w a t e r r e s e a r c h 4 3 ( 2 0 0 9 ) 1 4 7 1 -1 4 7

    The Axonal Guidance Receptor Neogenin Promotes Acute Inflammation

    Get PDF
    Neuronal guidance proteins (NGP) were originally described in the context of axonal growth and migration. Yet recent work has demonstrated that NGPs also serve as guidance cues for immune competent cells. A crucial target receptor for NGPs during embryonic development is the neogenin receptor, however its role during acute inflammation is unknown. We report here that neogenin is abundantly expressed outside the nervous system and that animals with endogenous repression of neogenin (Neo1−/−) demonstrate attenuated changes of acute inflammation. Studies using functional inhibition of neogenin resulted in a significant attenuation of inflammatory peritonitis. In studies employing bone marrow chimeric animals we found the hematopoietic presence of Neo1−/− to be responsible for the attenuated inflammatory response. Taken together our studies suggest that the guidance receptor neogenin holds crucial importance for the propagation of an acute inflammatory response and further define mechanisms shared between the nervous and the immune system
    • …
    corecore