5,669 research outputs found

    Solar thermal technology development: Estimated market size and energy cost savings. Volume 1: Executive summary

    Get PDF
    Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. The fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. STT R&D is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from 0to0 to 10 billion (1990 values in 1981 dollars), dependng on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest

    New massive supergravity multiplets

    Get PDF
    We present new off-shell formulations for the massive superspin-3/2 multiplet. In the massless limit, they reduce respectively to the old minimal (n=-1/3) and non-minimal (n≠−1/3,0n\neq -1/3, 0) linearized formulations for 4D N=1 supergravity. Duality transformations, which relate the models constructed, are derived.Comment: 18 pages, LaTeX; v2: minor changes, references adde

    Time reversal and exchange symmetries of unitary gate capacities

    Full text link
    Unitary gates are an interesting resource for quantum communication in part because they are always invertible and are intrinsically bidirectional. This paper explores these two symmetries: time-reversal and exchange of Alice and Bob. We will present examples of unitary gates that exhibit dramatic separations between forward and backward capacities (even when the back communication is assisted by free entanglement) and between entanglement-assisted and unassisted capacities, among many others. Along the way, we will give a general time-reversal rule for relating the capacities of a unitary gate and its inverse that will explain why previous attempts at finding asymmetric capacities failed. Finally, we will see how the ability to erase quantum information and destroy entanglement can be a valuable resource for quantum communication.Comment: 17 pages. v2: improved bounds, clarified proofs. v3: published version, added section explaining notatio

    Method for fiberizing ceramic materials Patent

    Get PDF
    Process for fiberizing ceramic materials with high fusion temperatures and tensile strengt

    Self-erecting reflector Patent

    Get PDF
    Antenna design with self erecting mesh reflecto

    D=2 N=(2,2) Semi Chiral Vector Multiplet

    Full text link
    We describe a new 1+1 dimensional N=(2,2) vector multiplet that naturally couples to semi chiral superfields in the sense that the gauged supercovariant derivative algebra is only consistent with imposing covariantly semi chiral superfield constraints. It has the advantages that its prepotentials shift by semi chiral superfields under gauge transformations. We also see that the multiplet relates the chiral vector multiplet with the twisted chiral vector multiplet by reducing to either multiplet under appropriate limits without being reducible in terms of the chiral and twisted chiral vector multiplet. This is explained from the superspace geometrical point of view as the result of possessing a symmetry under the discrete supercoordinate transformation that is responsible for mirror copies of supermultiplets. We then describe how to gauge a non linear sigma model with semi chiral superfields using the prepotentials of the new multiplet.Comment: 15 page

    Method of preparing zinc orthotitanate pigment

    Get PDF
    Zinc orthotitanate suitable for use as a pigment for spacecraft thermal control coatings is prepared by heating a slightly zinc deficient reaction mixture of precipitated oxalates of zinc and titanium. The reaction mixture can be formed by coprecipitation of zinc and titanium oxalates from chloride solution or by mixing separately precipitated oxalates. The mixture is first heated to 400 to 600 C to remove volatiles and is then rapidly heated at 900 to 1200 C. Zinc orthotitanate produced by this method exhibits the very fine particle size needed for thermal control coatings as well as stability in a space environment

    Improved thermal paint formulation

    Get PDF
    Potassium silicate-treated zinc oxide paint stabilizes pigment against ultraviolet-induced, bleachable degradation in infrared region, and permits use of ZnO as pigment in ultraviolet-stable coatings based upon polymethyl siloxane elastomers and resins. Material has low absorptance/emittance ratio
    • …
    corecore