6,182 research outputs found

    Nanocrystal seeding: A low temperature route to polycrystalline Si films

    Get PDF
    A novel method is presented for growth of polycrystalline silicon films on amorphous substrates at temperatures of 540–575 °C. Grain nucleation and grain growth are performed in two steps, using Si nanocrystals as nuclei ("seeds"). The nanocrystal seeds are produced by excimer laser photolysis of disilane in a room temperature flow cell. Film (grain) growth occurs epitaxially on the seeds in a separate thermal chemical vapor deposition (CVD) step, with growth rates 10–100 times higher than similar CVD growth rates on crystal Si. Grain size and CVD growth rates are dependent on seed coverage, for seed coverage <0.2 monolayers

    D=(2+1) O(N) Wess-Zumino model in a large N limit

    Full text link
    Using the superfield formalism, the effective Kahlerian superpotential of the massless \cal{N}=1 O(N) Wess-Zumino model is computed in the limit of large N, in three spacetime dimensions. The effective Kahlerian superpotential is evaluated at the subleading order in the 1/N expansion, which involves diagrams up to two-loop order, for a small coupling constant. We show that the O(N) symmetry of the model is preserved in this approximation and that no mass is dynamically generated in the supersymmetric phase. We discuss why spontaneous O(N) symmetry breaking cannot be induced by radiative corrections in such model.Comment: 8 pages, 1 figur

    Supersymmetric Fluid Dynamics

    Full text link
    Recently Navier-Stokes (NS) equations have been derived from the duality between the black branes and a conformal fluid on the boundary of AdS_5. Nevertheless, the full correspondence has to be established between solutions of supergravity in AdS_5 and supersymmetric field theories on the boundary. That prompts the construction of NS equations for a supersymmetric fluid. In the framework of rigid susy, there are several possibilities and we propose one candidate. We deduce the equations of motion in two ways: both from the divergenless condition on the energy-momentum tensor and by a suitable parametrization of the auxiliary fields. We give the complete component expansion and a very preliminary analysis of the physics of this supersymmetric fluid.Comment: 24 pages, Latex2

    Dynamical breaking of gauge symmetry in supersymmetric quantum electrodynamics in three-dimensional spacetime

    Full text link
    The dynamical breaking of gauge symmetry in the supersymmetric quantum electrodynamics in three-dimensional spacetime is studied at two-loop approximation. At this level, the effective superpotential is evaluated in a supersymmetric phase. At one-loop order, we observe a generation of the Chern-Simons term due to a parity violating term present in the classical action. At two-loop order, the scalar background superfield acquires a nonvanishing vacuum expectation value, generating a mass term AαAαA^{\alpha}A_{\alpha} through Coleman-Weinberg mechanism. It is observed that the mass of gauge superfield is predominantly an effect of the topological Chern-Simons term.Comment: 10 pages, 2 figures, PRD versio

    Seeking the Loop Quantum Gravity Barbero-Immirzi Parameter and Field in 4D, N\cal N = 1 Supergravity

    Full text link
    We embed the Loop Quantum Gravity Barbero-Immirzi parameter and field within an action describing 4D, N\cal N = 1 supergravity and thus within a Low Energy Effective Action of Superstring/M-Theory. We use the fully gauge-covariant description of supergravity in (curved) superspace. The gravitational constant is replaced with the vacuum expectation value of a scalar field, which in local supersymmetry is promoted to a complex, covariantly chiral scalar superfield. The imaginary part of this superfield couples to a supersymmetric Holst term. The Holst term also serves as a starting point in the Loop Quantum Gravity action. This suggest the possibility of a relation between Loop Quantum Gravity and supersymmetric string theory, where the Barbero-Immirzi parameter and field of the former play the role of the supersymmetric axion in the latter. Adding matter fermions in Loop Quantum Gravity may require the extension of the Holst action through the Nieh-Yan topological invariant, while in pure, matter-free supergravity their supersymmetric extensions are the same. We show that, when the Barbero-Immirzi parameter is promoted to a field in the context of 4D supergravity, it is equivalent to adding a dynamical complex chiral (dilaton-axion) superfield with a non-trivial kinetic term (or K\"ahler potential), coupled to supergravity.Comment: 20 pages, 1 figure. Replaced with accepted version in Phys. Rev.

    Perturbative finiteness of the three-dimensional Susy QED to all orders

    Full text link
    Within the superfield formalism, we study the ultraviolet properties of the three-dimensional supersymmetric quantum electrodynamics. The theory is shown to be finite at all loops orders in a particular gauge.Comment: 8 pages, 3 figures, revtex

    A Note on Embedding of M-Theory Corrections into Eleven-Dimensional Superspace

    Full text link
    By analyzing eleven-dimensional superspace fourth-rank superfield strength F-Bianchi identities, we show that M-theory corrections to eleven-dimensional supergravity can not be embedded into the mass dimension zero constraints, such as the (\g^{a b})_{\a\b} X_{a b}{}^c or i (\g^{a_1... a_5})_{\a\b} X_{a_1... a_5}{}^c -terms in the supertorsion constraint T_{\a\b}{}^c. The only possible modification of superspace constraint at dimension zero is found to be the scaling of F_{\a\b c d} like F_{\a\b c d} = (1/2) \big(\g_{c d}\big)_{\a\b} e^\Phi for some real scalar superfield \Phi, which alone is further shown not enough to embed general M-theory corrections. This conclusion is based on the dimension zero F-Bianchi identity under the two assumptions: (i) There are no negative dimensional constraints on the F-superfield strength: F_{\a\b\g\d} = F_{\a\b\g d} =0; (ii) The supertorsion T-Bianchi identities and F-Bianchi identities are not modified by Chern-Simons terms. Our result can serve as a powerful tool for future exploration of M-theory corrections embedded into eleven-dimensional superspace supergravity.Comment: 14 pages, latex, some minor typos corrected, as well as old section 5 deleted, due to the subtlety about Chern-Simons term in F-Bianchi identitie

    Identification of the orphan gene Prod 1 in basal and other salamander families.

    Get PDF
    The urodele amphibians (salamanders) are the only adult tetrapods able to regenerate the limb. It is unclear if this is an ancestral property that is retained in salamanders but lost in other tetrapods or if it evolved in salamanders. The three-finger protein Prod 1 is implicated in the mechanism of newt limb regeneration, and no orthologs have been found in other vertebrates, thus providing evidence for the second viewpoint. It has also been suggested that this protein could play a role in salamander-specific aspects of limb development. There are ten families of extant salamanders, and Prod 1 has only been identified in two of them to date. It is important to determine if it is present in other families and, particularly, the basal group of two families which diverged approximately 200 MYA

    Supersymmetric K field theories and defect structures

    Full text link
    We construct supersymmetric K field theories (i.e., theories with a non-standard kinetic term) in 1+1 and 2+1 dimensions such that the bosonic sector just consists of a nonstandard kinetic term plus a potential. Further, we study the possibility of topological defect formation in these supersymmetric models. Finally, we consider more general supersymmetric K field theories where, again, topological defects exist in some cases.Comment: Latex, 6 figures, 27 page

    Coleman-Weinberg mechanism in a three-dimensional supersymmetric Chern-Simons-matter model

    Get PDF
    Using the superfield formalism, we study the dynamical breaking of gauge symmetry in the N=1 three-dimensional supersymmetric Chern-Simons model, coupled to a complex scalar superfield with a quartic self-coupling. This is an analogue of the conformally invariant Coleman-Weinberg model in four spacetime dimensions. We show that a mass for the gauge and matter superfields are dynamically generated after two-loop corrections to the effective superpotential. We also discuss the N=2 extension of our work, showing that the Coleman-Weinberg mechanism in such model is not feasible, because it is incompatible with perturbation theory.Comment: 14 pages, 2 figures. Minor corrections, references added. Journal versio
    • …
    corecore