34 research outputs found

    Upper limb prostheses: bridging the sensory gap

    Get PDF
    Replacing human hand function with prostheses goes far beyond only recreating muscle movement with feedforward motor control. Natural sensory feedback is pivotal for fine dexterous control and finding both engineering and surgical solutions to replace this complex biological function is imperative to achieve prosthetic hand function that matches the human hand. This review outlines the nature of the problems underlying sensory restitution, the engineering methods that attempt to address this deficit and the surgical techniques that have been developed to integrate advanced neural interfaces with biological systems. Currently, there is no single solution to restore sensory feedback. Rather, encouraging animal models and early human studies have demonstrated that some elements of sensation can be restored to improve prosthetic control. However, these techniques are limited to highly specialized institutions and much further work is required to reproduce the results achieved, with the goal of increasing availability of advanced closed loop prostheses that allow sensory feedback to inform more precise feedforward control movements and increase functionality

    Structural properties of reduced Upton montmorillonite

    No full text

    A Time Resolved XANES Study of an Organo-Clay Redox System

    No full text
    In situ, time-resolved X-ray absorption near edge structure (XANES) spectroscopic measurements of tetraphenylboron (TPB)-treated Fe-bearing clay minerals were conducted to investigate whether smectite structural Fe was reduced during surface-enhanced oxidative degradation of TPB. Reference samples were prepared by reducing varying amounts of structural Fe with Na-dithionite in an inert atmosphere. Analysis of the Kα X-ray fluorescence near edge structure of reference and TPB-treated samples was accomplished by comparing the ratios of edge crest intensities at energies corresponding to oxidized and dithionite-reduced samples following intensity normalization and energy calibration. About 15% of nontronite structural Fe was reduced during the course of the reaction with TPB, whereas more than 50% of the structural Fe in montmorillonite was reduced. XANES spectroscopy provided additional spectroscopic evidence for differences in the reactivity of crystallographic sites of Fe within montmorillonites (both cis and trans Fe) and nontronites (predominantly cis Fe) and suggests that TPB reacted preferentially with trans Fe

    Gas permeability of partially hydrated geosynthetic clay liner under two stress conditions

    Full text link
    The results of a series of gas permeability tests, with monitoring of gravimetric/volumetric moisture content and total suction, on a commercially available needle-punched geosynthetic clay liner (GCL) are presented. GCL specimens were partially hydrated with deionised water under 2 and 20 kPa confinement prior to testing. The tests were conducted at differential pressures ranging from 1 to 10 kPa. Gas permeability was found to decrease with an increase in gravimetric/volumetric moisture content and a decrease of suction. The effect of the preconditioning stress was found to be more pronounced at gravimetric moisture contents greater than 40% (25% apparent degree of saturation, 0·30 m3/m3 volumetric moisture content), and suctions less than 1·6 MPa

    Water vapour adsorption and desorption in GCLs

    Get PDF
    Super-saturated salt solutions are used to control relative humidity (RH) and to infer the hydration (water uptake and loss) behaviour of three needle-punched geosynthetic clay liners (GCLs) with respect to time under conditions of both free swell and 20 kPa applied stress. It is shown that RH and applied stress play a key role in the hydration behaviour with time when GCL specimens were in equilibrium with water vapour. It was also observed that water uptake and loss was affected by the bentonite form (powdered or granular) and mineralogy of the bentonite. However, the effect of GCL structure (i.e. difference in geotextiles and bonding of needle-punched fibres to the carrier geotextile) on their hydration behaviour for GCLs with similar form of bentonite was not significant for RH≤97.7%. The effect of GCL structure became more apparent at 100% RH (for all GCLs). The results presented in this study can be used to better assess the hydration of GCLs in field applications such as waste containment liners and cover systems at different RH and overburden stress conditions

    Iron reduction and changes in cation exchange capacity in intermittently waterlogged soil

    No full text
    International audienceThe long‐term effects of intermittent flooding on soil properties were studied in field experiments on a Vertisol cropped with rice in Senegal. The dominant clay minerals were smectite and kaolinite. When the soil was reduced after flooding, its cation exchange capacity (CEC) increased to twice that of its oxidized, unflooded state. Mössbauer spectroscopy showed an increase in smectite structural FeII upon reduction, which explained a part of the increase in CEC. The rest of the increase was attributed to the removal of iron oxyhydroxide coatings by reductive dissolution. The reduction and dissolution of oxides under the field conditions were substantiated by analysis of the surfaces of vermiculites buried in the Ap horizons of the cropped and the non‐cropped soils. The redox‐induced CEC changes were found to be reversible after 22 cycles of rice cropping. Nevertheless, the structural Fe and free Fe contents of the rice field Ap horizon were less than those of soil in uncropped neighbouring land, suggesting that inundation induced weathering and eluviation of the minerals. The observed changes in CEC and related redox reactions may substantially modify proton, anion and cation balances in intermittently flooded soils

    Using x-ray powder diffraction as a cost effective tool in cement industry

    Full text link
    Rietveld Analysis of cement diffraction patterns have been used to determined the composition of cement since John Taylor\u27s pioneering work in the 1990\u27s. Since then many workers have used this techniques to analyse cement and supplementary cementitious materials and their hydration products, both for research and production control purposes. Nevertheless there are a number of factors, including the amorphous content of the cement and relative proportion of mineral polymorphs present in the initial clinker, whose impact on analysis are still not completely understood. X-ray powder diffraction beamlines from the Brazilian Synchrotron Light Laboratory (LNLS) and the Australian Synchrotron, which produce more intensity and better resolution than normal x-ray diffraction sources, were used to investigate cement diffraction patterns and the hydration products of a range of cement pastes cured for up to 28 days. This study highlights the information that can be obtained from X-ray diffraction analysis for controlling and optimizing cement production and concrete durability.<br /
    corecore