360 research outputs found

    Chiral Rings and Anomalies in Supersymmetric Gauge Theory

    Get PDF
    Motivated by recent work of Dijkgraaf and Vafa, we study anomalies and the chiral ring structure in a supersymmetric U(N) gauge theory with an adjoint chiral superfield and an arbitrary superpotential. A certain generalization of the Konishi anomaly leads to an equation which is identical to the loop equation of a bosonic matrix model. This allows us to solve for the expectation values of the chiral operators as functions of a finite number of ``integration constants.'' From this, we can derive the Dijkgraaf-Vafa relation of the effective superpotential to a matrix model. Some of our results are applicable to more general theories. For example, we determine the classical relations and quantum deformations of the chiral ring of N=1\N=1 super Yang-Mills theory with SU(N) gauge group, showing, as one consequence, that all supersymmetric vacua of this theory have a nonzero chiral condensate.Comment: 67 pages, minor change

    Self-Assembly of Nanoparticles onto the Surfaces of Polystyrene Spheres with a Tunable Composition and Loading

    Get PDF
    Functional colloidal materials were prepared by design through the self-assembly of nanoparticles (NPs) on the surfaces of polystyrene (PS) spheres with control over NP surface coverage, NP-to-NP spacing, and NP composition. The ability to control and fine tune the coating was extended to the first demonstration of the co-assembly of NPs of dissimilar composition onto the same PS sphere, forming a multi-component coating. A broad range of NP decorated PS (PS@NPs) spheres were prepared with uniform coatings attributed to electrostatic and hydrogen bonding interactions between stabilizing groups on the NPs and the functionalized surfaces of the PS spheres. This versatile two-step method provides more fine control than methods previously demonstrated in the literature. These decorated PS spheres are of interest for a number of applications, such as catalytic reactions where the PS spheres provide a support for the dispersion, stabilization, and recovery of NP catalysts. The catalytic properties of these PS@NPs spheres were assessed by studying the catalytic degradation of azo dyes, an environmental contaminant detrimental to eye health. The PS@NPs spheres were used in multiple, sequential catalytic reactions while largely retaining the NP coating

    The Influence of Electrochemical Aging on Bead-Blasted Nickel Electrodes for the Oxygen Evolution Reaction

    Get PDF
    The oxygen evolution reaction (OER) is of importance to both electrochemical energy conversion and energy storage. Low-cost, non-precious metal electrocatalysts that can withstand high operational current densities will likely be the best candidates for meeting the commercial needs for a range of OER applications. In addition to electrode composition, the surface morphology of gas evolving electrodes can affect their efficiency and performance. In this work, we demonstrate the influence of electrochemical aging on the performance of micro- and nanoscale textures for the OER. A series of textured Ni electrodes were prepared by rapid, scalable techniques, which included the use of bead-blasting. Two distinct approaches to induce the formation of the active Ni (oxy)hydroxide phase were conducted by electrochemical aging using cyclic voltammetry (CV) methods. The influence of the aging technique was assessed and correlated to the performance of these surface textures. Differences in the morphology of these textures and their resulting surface areas were estimated using three-dimensional (3D) reconstructions obtained from electron microscopy analyses. Focused ion beam (FIB) milling was also performed on the bead-blasted electrodes to visualize buried cracks and voids. The potential required for the OER at an applied current density of 500 mA/cm2 exhibited a reduction of 0.7 V for the electrodes aged by the steady-state treatment. The OER performance of the textured electrodes were found to correlate to both the electrode surface morphology and the type of electrochemical aging applied to the electrodes

    Convergent evolution of saccate body shapes in nematodes through distinct developmental mechanisms

    Get PDF
    Background The vast majority of nematode species have vermiform (worm-shaped) body plans throughout post-embryonic development. However, atypical body shapes have evolved multiple times. The plant-parasitic Tylenchomorpha nematode Heterodera glycines hatches as a vermiform infective juvenile. Following infection and the establishment of a feeding site, H. glycines grows disproportionately greater in width than length, developing into a saccate adult. Body size in Caenorhabditis elegans was previously shown to correlate with post-embryonic divisions of laterally positioned stem cell-like ‘seam’ cells and endoreduplication of seam cell epidermal daughters. To test if a similar mechanism produces the unusual body shape of saccate parasitic nematodes, we compared seam cell development and epidermal ploidy levels of H. glycines to C. elegans. To study the evolution of body shape development, we examined seam cell development of four additional Tylenchomorpha species with vermiform or saccate body shapes. Results We confirmed the presence of seam cell homologs and their proliferation in H. glycines. This results in the adult female epidermis having approximately 1800 nuclei compared with the 139 nuclei in the primary epidermal syncytium of C. elegans. Similar to C. elegans, we found a significant correlation between H. glycines body volume and the number and ploidy level of epidermal nuclei. While we found that the seam cells also proliferate in the independently evolved saccate nematode Meloidogyne incognita following infection, the division pattern differed substantially from that seen in H. glycines. Interestingly, the close relative of H. glycines, Rotylenchulus reniformis does not undergo extensive seam cell proliferation during its development into a saccate form. Conclusions Our data reveal that seam cell proliferation and epidermal nuclear ploidy correlate with growth in H. glycines. Our finding of distinct seam cell division patterns in the independently evolved saccate species M. incognita and H. glycines is suggestive of parallel evolution of saccate forms. The lack of seam cell proliferation in R. reniformis demonstrates that seam cell proliferation and endoreduplication are not strictly required for increased body volume and atypical body shape. We speculate that R. reniformis may serve as an extant transitional model for the evolution of saccate body shape.Ope

    On the dynamical generation of the Maxwell term and scale invariance

    Full text link
    Gauge theories with no Maxwell term are investigated in various setups. The dynamical generation of the Maxwell term is correlated to the scale invariance properties of the system. This is discussed mainly in the cases where the gauge coupling carries dimensions. The term is generated when the theory contains a scale explicitly, when it is asymptotically free and in particular also when the scale invariance is spontaneously broken. The terms are not generated when the scale invariance is maintained. Examples studied include the large NN limit of the CPN−1CP^{N-1} model in (2+ϵ)(2+\epsilon) dimensions, a 3D gauged ϕ6\phi^6 vector model and its supersymmetric extension. In the latter case the generation of the Maxwell term at a fixed point is explored. The phase structure of the d=3d=3 case is investigated in the presence of a Chern-Simons term as well. In the supersymmetric ϕ6\phi^6 model the emergence of the Maxwell term is accompanied by the dynamical generation of the Chern-Simons term and its multiplet and dynamical breaking of the parity symmetry. In some of the phases long range forces emerge which may result in logarithmic confinement. These include a dilaton exchange which plays a role also in the case when the theory has no gauge symmetry. Gauged Lagrangian realizations of the 2D coset models do not lead to emergent Maxwell terms. We discuss a case where the gauge symmetry is anomalous.Comment: 38 pages, 4 figures; v2 slightly improved, typos fixed, references added, published versio

    Microlensing and Halo Cold Dark Matter

    Full text link
    We discuss the implications of the more than 50 microlensing events seen by the EROS, MACHO, and OGLE collaborations for the composition of the halo of our galaxy. The event rates indicate that the halo mass fraction in MACHO's is less than 30\%, consistent with expectations for a universe whose primary component is cold dark matter. We caution that the uncertainties are such that a larger MACHO fraction cannot yet be excluded.Comment: 8 pages, latex, 4 figures, (Minor revisions of our galactic models

    Upper limb prostheses: bridging the sensory gap

    Get PDF
    Replacing human hand function with prostheses goes far beyond only recreating muscle movement with feedforward motor control. Natural sensory feedback is pivotal for fine dexterous control and finding both engineering and surgical solutions to replace this complex biological function is imperative to achieve prosthetic hand function that matches the human hand. This review outlines the nature of the problems underlying sensory restitution, the engineering methods that attempt to address this deficit and the surgical techniques that have been developed to integrate advanced neural interfaces with biological systems. Currently, there is no single solution to restore sensory feedback. Rather, encouraging animal models and early human studies have demonstrated that some elements of sensation can be restored to improve prosthetic control. However, these techniques are limited to highly specialized institutions and much further work is required to reproduce the results achieved, with the goal of increasing availability of advanced closed loop prostheses that allow sensory feedback to inform more precise feedforward control movements and increase functionality

    Template Assisted Preparation of High Surface Area Macroporous Supports with Uniform and Tunable Nanocrystal Loadings

    Get PDF
    The incorporation of catalytic nanocrystals into macroporous support materials has been very attractive due to their increased catalyst mass activity. This increase in catalytic efficiency is attributed in part to the increased surface area to volume ratio of the catalysts and the use of complementary support materials that can enhance their catalytic activity and stability. A uniform and tunable coating of nanocrystals on porous matrices can be difficult to achieve with some techniques such as electrodeposition. More sophisticated techniques for preparing uniform nanocrystal coatings include atomic layer deposition, but it can be difficult to reproduce these processes at commercial scales required for preparing catalyst materials. In this study, catalytic nanocrystals supported on three dimensional (3D) porous structures were prepared. The demonstrated technique utilized scalable approaches for achieving a uniform surface coverage of catalysts through the use of polymeric sacrificial templates. This template assisted technique was demonstrated with a good control over the surface coverage of catalysts, support material composition, and porosities of the support material. A series of regular porous supports were each prepared with a uniform coating of nanocrystals, such as NaYF4 nanocrystals supported by a porous 3D lattice of Ti1−xSixO2, Pt nanocrystals on a 3D porous support of TiO2, Pd nanocrystals on Ni nanobowls, and Pt nanocrystals on 3D assemblies of Au/TiO2 nanobowls. The template assisted preparation of high surface area macroporous supports could be further utilized for optimizing the use of catalytic materials in chemical, electrochemical, and photochemical reactions through increasing their catalytic efficiency and stability

    Rhythmic dynamics and synchronization via dimensionality reduction : application to human gait

    Get PDF
    Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system
    • …
    corecore