24 research outputs found

    ATM mediated phosphorylation of CHD4 contributes to genome maintenance

    Get PDF
    Background: In order to maintain cellular viability and genetic integrity cells must respond quickly following the\ud induction of cytotoxic double strand DNA breaks (DSB). This response requires a number of processes including\ud stabilisation of the DSB, signalling of the break and repair. It is becoming increasingly apparent that one key step\ud in this process is chromatin remodelling.\ud Results: Here we describe the chromodomain helicase DNA-binding protein (CHD4) as a target of ATM kinase. We\ud show that ionising radiation (IR)-induced phosphorylation of CHD4 affects its intranuclear organization resulting in\ud increased chromatin binding/retention. We also show assembly of phosphorylated CHD4 foci at sites of DNA\ud damage, which might be required to fulfil its function in the regulation of DNA repair. Consistent with this, cells\ud overexpressing a phospho-mutant version of CHD4 that cannot be phosphorylated by ATM fail to show enhanced\ud chromatin retention after DSBs and display high rates of spontaneous damage.\ud Conclusion: These results provide insight into how CHD4 phosphorylation might be required to remodel\ud chromatin around DNA breaks allowing efficient DNA repair to occur

    Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage

    Get PDF
    Adefective response to DNA damage is observed in several human autosomal recessive ataxias with oculomotor apraxia, including ataxia-telangiectasia. We report that senataxin, defective in ataxia oculomotor apraxia (AOA) type 2, is a nuclear protein involved in the DNA damage response. AOA2 cells are sensitive to H2O2, camptothecin, and mitomycin C, but not to ionizing radiation, and sensitivity was rescued with full-length SETX cDNA. AOA2 cells exhibited constitutive oxidative DNA damage and enhanced chromosomal instability in response to H2O2. Rejoining of H2O2-induced DNA double-strand breaks (DSBs) was significantly reduced in AOA2 cells compared to controls, and there was no evidence for a defect in DNA single-strand break repair. This defect in DSB repair was corrected by full-length SETX cDNA. These results provide evidence that an additional member of the autosomal recessive AOA is also characterized by a defective response to DNA damage, which may contribute to the neurodegeneration seen in this syndrome

    Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation

    Get PDF
    In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NES1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G2/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G2 checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G2/M checkpoint

    Phospho-specific antibodies as a tool to study in vivo regulation of BRCA1 after DNA damage

    No full text
    Phospho-specific antibodies have become very useful reagents for study of signal transduction pathways. This chapter describes the production of phospho-specific antibodies and their use to assess individual phosphorylation events in vivo in cells. The first step involves the synthesis of peptides (12-15 residues), where the phosphorylation site is centrally located, and a cysteine residue is incorporated at either the N- or C-terminus of the peptide to facilitate coupling it to an immunogenic carrier protein. No special immunization protocols are required to generate phospho-specific antibodies. Typically, animals of choice are immunized twice, several weeks apart, and enzyme-linked immunosorbent assay is used to determine the relative titer of sera against phosphorylated and nonphosphorylated peptides. Where the titer against phosphorylated peptides is much greater than nonphosphorylated peptides, the sera can be used at appropriate dilutions without further processing. In case a significant level of antibodies specific to the nonphosphorylated peptide is present in the antisera, an enhancement step is used to obtain a useful phospho-specific antibody. Although these enhanced antisera are suitable for many applications, there may be circumstances where affinity-purified antibodies are required. These antibodies can be used to detect a particular phosphorylation event in vivo using Western blotting, immunoprecipitation, and immunofluorescence

    ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor

    No full text
    The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes

    ATM mediated signaling defends the integrity of the genome

    No full text
    The human genome is exposed to a variety of agents, both endogenous and exogenous, that threaten its integrity, compromise its ability to be expressed into RNA and protein, and alter its capacity to be transmitted faithfully from one generation to the next. Several mechanisms have evolved to recognize these forms of DNA damage and signal them to the DNA repair machinery and the cell cycle checkpoints. These mechanisms maintain the integrity of the genomic material and minimize the risk of cancer and other pathologies. It is evident that ATM plays a central role in maintaining the integrity of the genome and in preventing cancer and neurodegeneration. This role is largely in the recognition and signaling of DNA DSB. ATM is not the primary sensor of the break but it is at least partially activated by alteration of chromatin structure in the immediate region adjacent to the break. The primary sensor of the DNA DSB is the MRN complex, which recruits ATM to the break where it is fully activated by autophosphorylation and acetylation at least in human cells. This impacts cell cycle control and cell survival in response to DNA damage. While the MRN complex plays an important role upstream of ATM it also becomes a target for ATM dependent phosphorylation in downstream signaling. It is well established that ATM phosphorylates Nbs1, one member of that complex on two sites (S278, S343), and these sites play a role in downstream signaling

    Metabolic Stress and Mitochondrial Dysfunction in Ataxia-Telangiectasia

    No full text
    The ataxia-telangiectasia mutated (ATM) protein kinase is, as the name implies, mutated in the human genetic disorder ataxia-telangiectasia (A-T). This protein has its “finger in many pies”, being responsible for the phosphorylation of many thousands of proteins in different signaling pathways in its role in protecting the cell against a variety of different forms of stress that threaten to perturb cellular homeostasis. The classical role of ATM is the protection against DNA damage, but it is evident that it also plays a key role in maintaining cell homeostasis in the face of oxidative and other forms of non-DNA damaging stress. The presence of ATM is not only in the nucleus to cope with damage to DNA, but also in association with other organelles in the cytoplasm, which suggests a greater protective role. This review attempts to address this greater role of ATM in protecting the cell against both external and endogenous damage

    Suppression of tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1

    No full text
    The human Tousled-like kinases 1 and 2 (TLK) have been shown to be active during S phase of the cell cycle. TLK activity is rapidly suppressed by DNA damage and by inhibitors of replication. Here we report that the signal transduction pathway, which leads to transient suppression of TLK activity after the induction of double-strand breaks (DSBs) in the DNA, is dependent on the presence of a functional ataxia-telangiectasia-mutated kinase (ATM). Interestingly, we have discovered that rapid suppression of TLK activity after low doses of ultraviolet (UV) irradiation or aphidicolin-induced replication block is also ATM-dependent. The nature of the signal that triggers ATM-dependent downregulation of TLK activity after UVC and replication block remains unknown, but it is not due exclusively to DSBs in the DNA. We also demonstrate that TLK suppression is dependent on the presence of a functional Nijmegan Breakage Syndrome protein (NBS1). ATM-dependent phosphorylation of NBS1 is required for the suppression of TLK activity, indicating a role for NBS1 as an adaptor or scaffold in the ATM/TLK pathway. ATM does not phosphorylate TLK directly to regulate its activity, but Chk1 does phosphorylate TLK1 GST-fusion proteins in vitro. Using Chk1 siRNAs, we show that Chk1 is essential for the suppression of TLK activity after replication block, but that ATR, Chk2 and BRCA1 are dispensable for TLK suppression. Overall, we propose that ATM activation is not linked solely to DSBs and that ATM participates in initiating signaling pathways in response to replication block and UV-induced DNA damage
    corecore