6 research outputs found

    Definition of Drosophila hemocyte subsets by cell-type specific antigens.

    Get PDF
    We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. On the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmatocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged in four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocytes

    The Mutation without childrenrgl Causes Ecdysteroid Deficiency in Third-Instar Larvae of Drosophila melanogaster

    Get PDF
    Larvae homozygous for the recessive lethal allele gene, located in polytene chromosomal region 97F, consists of 11 exons. A 6.8-kb transcript is expressed throughout development but is absent in the mutant gene encodes a protein of 187 kDa. Eight zinc fingers of the C2–C2 type point to a possible function as a transcription factor. The protein shows considerable homology to human proteins which have been implicated in both mental retardation and a leukemia/lymphoma syndrome

    Nimrod, a Putative Phagocytosis Receptor with EGF Repeats in Drosophila Plasmatocytes

    Get PDF
    SummaryThe hemocytes, the blood cells of Drosophila, participate in the humoral and cellular immune defense reactions against microbes and parasites [1–8]. The plasmatocytes, one class of hemocytes, are phagocytically active and play an important role in immunity and development by removing microorganisms as well as apoptotic cells. On the surface of circulating and sessile plasmatocytes, we have now identified a protein, Nimrod C1 (NimC1), which is involved in the phagocytosis of bacteria. Suppression of NimC1 expression in plasmatocytes inhibited the phagocytosis of Staphylococcus aureus. Conversely, overexpression of NimC1 in S2 cells stimulated the phagocytosis of both S. aureus and Escherichia coli. NimC1 is a 90–100 kDa single-pass transmembrane protein with ten characteristic EGF-like repeats (NIM repeats). The nimC1 gene is part of a cluster of ten related nimrod genes at 34E on chromosome 2, and similar clusters of nimrod-like genes are conserved in other insects such as Anopheles and Apis. The Nimrod proteins are related to other putative phagocytosis receptors such as Eater and Draper from D. melanogaster and CED-1 from C. elegans. Together, they form a superfamily that also includes proteins that are encoded in the human genome
    corecore