48 research outputs found

    Preparing clinical-grade myeloid dendritic cells by electroporation-mediated transfection of in vitro amplified tumor-derived mRNA and safety testing in stage IV malignant melanoma

    Get PDF
    BACKGROUND: Dendritic cells (DCs) have been used as vaccines in clinical trials of immunotherapy of cancer and other diseases. Nonetheless, progress towards the use of DCs in the clinic has been slow due in part to the absence of standard methods for DC preparation and exposure to disease-associated antigens. Because different ex vivo exposure methods can affect DC phenotype and function differently, we studied whether electroporation-mediated transfection (electrotransfection) of myeloid DCs with in vitro expanded RNA isolated from tumor tissue might be feasible as a standard physical method in the preparation of clinical-grade DC vaccines. METHODS: We prepared immature DCs (IDCs) from CD14(+ )cells isolated from leukapheresis products and extracted total RNA from freshly resected melanoma tissue. We reversely transcribed the RNA while attaching a T7 promoter to the products that we subsequently amplified by PCR. We transcribed the amplified cDNA in vitro and introduced the expanded RNA into IDCs by electroporation followed by DC maturation and cryopreservation. Isolated and expanded mRNA was analyzed for the presence of melanoma-associated tumor antigens gp100, tyrosinase or MART1. To test product safety, we injected five million DCs subcutaneously at three-week intervals for up to four injections into six patients suffering from stage IV malignant melanoma. RESULTS: Three preparations contained all three transcripts, one isolate contained tyrosinase and gp100 and one contained none. Electrotransfection of DCs did not affect viability and phenotype of fresh mature DCs. However, post-thaw viability was lower (69 ± 12 percent) in comparison to non-electroporated cells (82 ± 12 percent; p = 0.001). No patient exhibited grade 3 or 4 toxicity upon DC injections. CONCLUSION: Standardized preparation of viable clinical-grade DCs transfected with tumor-derived and in vitro amplified mRNA is feasible and their administration is safe

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    A systems biology approach to investigating the influence of exercise and fitness on the composition of leukocytes in peripheral blood

    No full text
    Abstract Background Exercise immunology has become a growing field in the past 20 years, with an emphasis on understanding how different forms of exercise affect immune function. Mechanistic studies are beginning to shed light on how exercise may impair the development of cancer or be used to augment cancer treatment. The beneficial effects of exercise on the immune system may be exploited to improve patient responses to cancer immunotherapy. Methods We investigated the effects of acute exercise on the composition of peripheral blood leukocytes over time in a male population of varying fitness. Subjects performed a brief maximal intensity cycling regimen and a longer less intense cycling regimen at separate visits. Leukocytes were measured by multi-parameter flow cytometry of more than 50 immunophenotypes for each collection sample. Results We found a differential induction of leukocytosis dependent on exercise intensity and duration. Cytotoxic natural killer cells demonstrated the greatest increase (average of 5.6 fold) immediately post-maximal exercise whereas CD15+ granulocytes demonstrated the largest increase at 3 h post-maximal exercise (1.6 fold). The longer, less intense endurance exercise resulted in an attenuated leukocytosis. Induction of leukocytosis did not differ in our limited study of active (n = 10) and sedentary (n = 5) subjects to exercise although we found that in baseline samples, sedentary individuals had elevated percentages of CD45RO+ memory CD4+ T cells and elevated proportions of CD4+ T cells expressing the negative immune regulator programmed death-1 (PD-1). Finally, we identified several leukocytes whose presence correlated with obesity related fitness parameters. Conclusions Our data suggests that leukocytes subsets are differentially mobilized into the peripheral blood and dependent on the intensity and duration of exercise. Pre-existing compositional differences of leukocytes were associated with various fitness parameters

    A method for identification and analysis of non-overlapping myeloid immunophenotypes in humans.

    No full text
    The development of flow cytometric biomarkers in human studies and clinical trials has been slowed by inconsistent sample processing, use of cell surface markers, and reporting of immunophenotypes. Additionally, the function(s) of distinct cell types as biomarkers cannot be accurately defined without the proper identification of homogeneous populations. As such, we developed a method for the identification and analysis of human leukocyte populations by the use of eight 10-color flow cytometric protocols in combination with novel software analyses. This method utilizes un-manipulated biological sample preparation that allows for the direct quantitation of leukocytes and non-overlapping immunophenotypes. We specifically designed myeloid protocols that enable us to define distinct phenotypes that include mature monocytes, granulocytes, circulating dendritic cells, immature myeloid cells, and myeloid derived suppressor cells (MDSCs). We also identified CD123 as an additional distinguishing marker for the phenotypic characterization of immature LIN-CD33+HLA-DR- MDSCs. Our approach permits the comprehensive analysis of all peripheral blood leukocytes and yields data that is highly amenable for standardization across inter-laboratory comparisons for human studies
    corecore