72 research outputs found

    How do we compare hundreds of bacterial genomes

    Get PDF
    The genomic revolution is fully upon us in 2006 and the pace of discovery is set to accelerate with the emergence of ultra-highthroughput sequencing technologies. Our complete genome collection of bacteria and archaea continues to grow in number and diversity, as genome sequencing is applied to an array of new problems, from the characterization of the pan-genome to the detection of mutation after experimentation and the exploration of microbial communities in unprecedented detail. The benefits of large-scale comparative genomic analyses are driving the community to think about how to manage our public collections of genomes in novel ways

    Ecological patterns and processes of temporal turnover within lung infection microbiota

    Get PDF
    Background: Chronic infection and consequent airway inflammation are the leading causes of morbidity and early mortality for people living with cystic fibrosis (CF). However, lower airway infections across a range of chronic respiratory diseases, including in CF, do not follow classical ‘one microbe, one disease’ concepts of infection pathogenesis. Instead, they are comprised of diverse and temporally dynamic lung infection microbiota. Consequently, temporal dynamics need to be considered when attempting to associate lung microbiota with changes in disease status. Set within an island biogeography framework, we aimed to determine the ecological patterns and processes of temporal turnover within the lung microbiota of 30 paediatric and adult CF patients prospectively sampled over a 3-year period. Moreover, we aimed to ascertain the contributions of constituent chronic and intermittent colonizers on turnover within the wider microbiota. Results: The lung microbiota within individual patients was partitioned into constituent chronic and intermittent colonizing groups using the Leeds criteria and visualised with persistence-abundance relationships. This revealed bacteria chronically infecting a patient were both persistent and common through time, whereas intermittently infecting taxa were infrequent and rare; respectively representing the resident and transient portions of the wider microbiota. It also indicated that the extent of chronic colonization was far greater than could be appreciated with microbiological culture alone. Using species-time relationships to measure temporal turnover and Vellend’s rationalized ecological processes demonstrated turnover in the resident chronic infecting groups was conserved and underpinned principally by the deterministic process of homogenizing dispersal. Conversely, intermittent colonizing groups, representing newly arrived immigrants and transient species, drove turnover in the wider microbiota and were predominately underpinned by the stochastic process of drift. For adult patients, homogenizing dispersal and drift were found to be significantly associated with lung function. Where a greater frequency of homogenizing dispersal was observed with worsening lung function and conversely drift increased with better lung function. Conclusions: Our work provides a novel ecological framework for understanding the temporal dynamics of polymicrobial infection in CF that has translational potential to guide and improve therapeutic targeting of lung microbiota in CF and across a range of chronic airway diseases. AWnQWdeG2wJZnAAmwW9_w- Video Abstrac

    Persistent intestinal abnormalities and symptoms in cystic fibrosis: The underpinning mechanisms impacting gut health and motility. Protocol for a systematic review.

    Get PDF
    Background Patients with cystic fibrosis (CF) are characterised by abnormalities of the intestinal tract relating to gut motility and physiological issues, with daily symptoms of disease including abdominal pain, flatulence, bloating, and constipation. With improvements in respiratory outcomes, a shift in disease manifestations has highlighted the prevalence of the gastrointestinal-related problems associated with CF, yet most therapies currently in clinical use for the gut symptoms of CF have been repurposed from other disease indications and have not been developed with a knowledge of the mechanisms underpinning gastrointestinal disease in CF. Increased attention towards the role of intestinal inflammation and microbial dysbiosis in the CF population warrants a comprehensive knowledge of these aspects alongside the increased luminal fat content, dysmotility, and small intestinal bacterial overgrowth (SIBO) resultant of the primary consequences of CFTR dysfunction (disrupted fluid secretion and pancreatic insufficiency), and how they contribute towards the intestinal complications of CF disease. Methods and Study Design We will conduct a systematic review to comprehensively address our current understanding of the primary consequences of CFTR dysfunction, and their subsequent secondary effects that contribute towards the disruption of gut motility, health, and associated symptoms in the CF intestine. Databases searched will include PubMed, CINAHL, MEDLINE and the Cochrane library from 1939 until a specified date of last search, alongside clinical trial databases for ongoing studies. Search strategies will include various terminology that relates to the primary mechanistic defects of CF, postulated secondary effects of such defects, and symptoms experienced in patients. A full search strategy is outlined in Appendix B. One reviewer will apply an inclusion criterion to obtained abstracts. Following agreement from a second reviewer, full-text articles will be sought, and data will be extracted from relevant articles. Disagreements will be resolved with a third reviewer. The quality of data will be assessed by the GRADE criteria. Data will be used to present a narrative, and where possible, quantitative synthesis. Discussion This systematic review will discuss our current understanding of the underpinning mechanisms of the persisting abnormalities in gut health and motility within CF, addressing potential intricate relationships that further contribute to disease progression within the intestinal tract. Furthermore, we will identify current gaps in the literature to propose directions for future research. A comprehensive understanding of these aspects in relation to intestinal abnormalities will aid future clinical directions

    Spatio-temporal variation of core and satellite arbuscular mycorrhizal fungus communities in Miscanthus giganteus

    Get PDF
    Arbuscular mycorrhizal fungi (AMF) are a group of obligate plant symbionts which can promote plant nutrition. AMF communities are diverse, but the factors which control their assembly in space and time remain unclear. In this study, the contributions of geographical distance, environmental heterogeneity and time in shaping AMF communities associated with Miscanthus giganteus (a perennial grass originating from south-east Asia) were determined over a 13 months period. In particular, the community was partitioned into core (abundant and persistent taxa) and satellite (taxa with low abundance and persistence) constituents and the drivers of community assembly for each determined. β-diversity was exceptionally low across the 140 m line transects, and there was limited evidence of geographical scaling effects on the composition of the core, satellite or combined communities. However, AMF richness and community composition changed over time associated with fluctuation within both the core and satellite communities. The degree to which AMF community variation was explained by soil properties was consistently higher in the core community than the combined and satellite communities, suggesting that the satellite community had considerable stochasticity associated with it. We suggest that the partitioning of communities into their core and satellite constituents could be employed to enhance the variation explained within microbial community analyses

    Mild Cystic Fibrosis Lung Disease Is Associated with Bacterial Community Stability

    Get PDF
    While much research supports a polymicrobial view of the CF airway, one in which the community is seen as the pathogenic unit, only controlled experiments using model bacterial communities can unravel the mechanistic role played by different communities. This report uses a large data set to identify a small number of communities as a starting point in the development of tractable model systems

    Bacterial culture underestimates lung pathogen detection and infection status in cystic fibrosis

    Get PDF
    Microbiological surveillance of airway secretions is central to clinical care in cystic fibrosis (CF). However, the efficacy of microbiological culture, the diagnostic gold standard for pathogen detection, has been increasingly questioned. Here we compared culture with targeted quantitative PCR (QPCR) for longitudinal detection of 2 key pathogens, Pseudomonas aeruginosa and Staphylococcus aureus. Prospectively collected respiratory samples taken from 20 pediatric and 20 adult CF patients over a period of 3-years were analyzed. Patients were eligible if considered free of chronic Pseudomonas infection within 12-months prior to start of study. QPCR revealed high levels of infection with both pathogens not apparent from culture alone. Pseudomonas and Staphylococcus were detected by culture on at least one sampling occasion in 12 and 29 of the patients, respectively. Conversely, both pathogens were detected in all 40 patients by QPCR. Classification of infection status also significantly altered in both pediatric and adult patients, where the number of patients deemed chronically infected with Pseudomonas and Staphylococcus increased from 1 to 28 and 9 to 34, respectively. Overall, Pseudomonas and Staphylococcus infection status classification changed respectively for 36 and 27 of all patients. In no cases did molecular identification lead to a patient being in a less clinically serious infection category. Pathogen detection and infection status classification significantly increased when assessed by QPCR in comparison to culture. This could have implications for clinical care of CF patients, including accuracy of infection diagnosis, relevant and timely antibiotic selection, antimicrobial resistance development, establishment of chronic infection, and cross-infection control. IMPORTANCE Chronic lung infection is the leading cause of morbidity and early mortality for people with cystic fibrosis (pwCF). Microbiological surveillance to detect lung pathogens is recommended as best practise in CF patient care. Here we studied pathogen detection in 40 pwCF over several years. We found that microbiological culture, the diagnostic gold standard, was significantly disparate to targeted culture-independent approaches for detection and determination of chronic infection status of two important pathogens in CF. Pathogen detection was significantly lower by culture and consequently infection status was also misclassified in most cases. In particular, the extent of chronic infection by both P. aeruginosa and S. aureus not realized with culture was striking. Our findings have implications for the development of infection and clinical care of pwCF. Future longitudinal studies with greater patient numbers will be needed to establish the full extent of the clinical implications indicated from this study

    Plant rhizosphere selection of plasmodiophorid lineages from bulk soil: The importance of "Hidden" diversity

    Get PDF
    © 2018 Bass, van der Gast, Thomson, Neuhauser, Hilton and Bending. Microbial communities closely associated with the rhizosphere can have strong positive and negative impacts on plant health and growth. We used a group-specific amplicon approach to investigate local scale drivers in the diversity and distribution of plasmodiophorids in rhizosphere/root and bulk soil samples from oilseed rape (OSR) and wheat agri-systems. Plasmodiophorids are plant- and stramenopile-associated protists including well known plant pathogens as well as symptomless endobiotic species. We detected 28 plasmodiophorid lineages (OTUs), many of them novel, and showed that plasmodiophorid communities were highly dissimilar and significantly divergent between wheat and OSR rhizospheres and between rhizosphere and bulk soil samples. Bulk soil communities were not significantly different between OSR and wheat systems. Wheat and OSR rhizospheres selected for different plasmodiophorid lineages. An OTU corresponding to Spongospora nasturtii was positively selected in the OSR rhizosphere, as were two genetically distinct OTUs. Two novel lineages related to Sorosphaerula veronicae were significantly associated with wheat rhizosphere samples, indicating unknown plant-protist relationships. We show that group-targeted eDNA approaches to microbial symbiont-host ecology reveal significant novel diversity and enable inference of differential activity and potential interactions between sequence types, as well as their presence

    Exploring the putative interactions between chronic kidney disease and chronic periodontitis.

    Get PDF
    Chronic kidney disease (CKD) and chronic periodontitis (CP) are both common diseases, which are found disproportionately comorbid with each other and have been reported to have a detrimental effect on the progression of each respective disease. They have an overlap in risk factors and both are a source of systemic inflammation along with a wide selection of immunological and non-specific effects that can affect the body over the lifespan of the conditions. Previous studies have investigated the directionality of the relationship between these two diseases; however, there is a lack of literature that has examined how these diseases may be interacting at the localized and systemic level. This review discusses how oral microorganisms have the ability to translocate and have distal effects and provides evidence for microbial involvement in a systemic disease. Furthermore, it summarizes the reported local and systemic effects of CKD and CP and discusses how the interaction of these effects may be responsible for directionality associations reported
    • …
    corecore