8 research outputs found

    Numerical simulations of a kilometre-thick Arctic ice shelf consistent with ice grounding observations

    Get PDF
    Recently obtained geophysical data show sets of parallel erosional features on the Lomonosov Ridge in the central Arctic Basin, indicative of ice grounding in water depths up to 1280 m. These features have been interpreted as being formed by an ice shelf—either restricted to the Amerasian Basin (the “minimum model”) or extending across the entire Arctic Basin. Here, we use a numerical ice sheet-shelf model to explore how such an ice shelf could form. We rule out the “minimum model” and suggest that grounding on the Lomonosov Ridge requires complete Arctic ice shelf cover; this places a minimum estimate on its volume, which would have exceeded that of the modern Greenland Ice Sheet. Buttressing provided by an Arctic ice shelf would have increased volumes of the peripheral terrestrial ice sheets. An Arctic ice shelf could have formed even in the absence of a hypothesised East Siberian Ice Sheet

    The Eocene-Oligocene boundary climate transition: An Antarctic perspective

    Get PDF
    Antarctica underwent a complex evolution over the course of the Cenozoic, which influenced the history of the Earth’s climate system. The Eocene-Oligocene boundary is a divide of this history when the ice-free ‘greenhouse world’ transitioned to the ‘icehouse’ with the glaciation of Antarctica. Prior to this, Antarctica experienced warm climates, peaking during Early Eocene when tropical-like conditions existed at the margins of the continent where geological evidence is present. Climate signals in the geological record show that the climate then cooled, but not enough to allow the existence of significant ice until the latest Eocene. Glacial deposits from several areas around the continental margin indicate that ice was present by the earliest Oligocene. This matches the major oxygen isotope positive shift captured by marine records. On land, vegetation was able to persist, but the thermophylic plants of the Eocene were replaced by shrubby vegetation with the southern beech Nothofagus, mosses and ferns, which survived in tundra-like conditions. Coupled climate–ice sheet modelling indicates that changing levels of atmospheric CO2 controlled Antarctica’s climate and the onset of glaciation. Factors such as mountain uplift, vegetation changes, ocean gateway opening and orbital forcing all played a part in cooling the polar climate, but only when CO2 levels reached critical thresholds was Antarctica tipped into an icy glacial world

    Net effect of ice-sheet-atmosphere interactions reduces simulated transient Miocene Antarctic ice-sheet variability

    Get PDF
    Benthic δ18O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So far, however, realistic simulations of the Miocene AIS have been limited to equilibrium states under different CO2 levels and orbital settings. Earlier transient simulations lacked ice-sheet-atmosphere interactions and used a present-day rather than Miocene Antarctic bedrock topography. Here, we quantify the effect of ice-sheet-atmosphere interactions, running the ice-sheet model IMAU-ICE using climate forcing from Miocene simulations by the general circulation model GENESIS. Utilising a recently developed matrix interpolation method enables us to interpolate the climate forcing based on CO2 levels (between 280 and 840 ppm), as well as varying ice-sheet configurations (between no ice and a large East Antarctic Ice Sheet). We furthermore implement recent reconstructions of Miocene Antarctic bedrock topography. We find that the positive albedo-temperature feedback, partly compensated for by a negative feedback between ice volume and precipitation, increases hysteresis in the relation between CO2 and ice volume. Together, these ice-sheet-atmosphere interactions decrease the amplitude of Miocene AIS variability in idealised transient simulations. Forced by quasi-orbital 40 kyr forcing CO2 cycles, the ice volume variability reduces by 21 % when ice-sheet-atmosphere interactions are included compared to when forcing variability is only based on CO2 changes. Thereby, these interactions also diminish the contribution of AIS variability to benthic δ18O fluctuations. Evolving bedrock topography during the early and mid-Miocene also reduces ice volume variability by 10 % under equal 40 kyr cycles of atmosphere and ocean forcing

    Net effect of ice-sheet-atmosphere interactions reduces simulated transient Miocene Antarctic ice-sheet variability

    No full text
    Benthic δ18O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So far, however, realistic simulations of the Miocene AIS have been limited to equilibrium states under different CO2 levels and orbital settings. Earlier transient simulations lacked ice-sheet-atmosphere interactions and used a present-day rather than Miocene Antarctic bedrock topography. Here, we quantify the effect of ice-sheet-atmosphere interactions, running the ice-sheet model IMAU-ICE using climate forcing from Miocene simulations by the general circulation model GENESIS. Utilising a recently developed matrix interpolation method enables us to interpolate the climate forcing based on CO2 levels (between 280 and 840 ppm), as well as varying ice-sheet configurations (between no ice and a large East Antarctic Ice Sheet). We furthermore implement recent reconstructions of Miocene Antarctic bedrock topography. We find that the positive albedo-temperature feedback, partly compensated for by a negative feedback between ice volume and precipitation, increases hysteresis in the relation between CO2 and ice volume. Together, these ice-sheet-atmosphere interactions decrease the amplitude of Miocene AIS variability in idealised transient simulations. Forced by quasi-orbital 40 kyr forcing CO2 cycles, the ice volume variability reduces by 21 % when ice-sheet-atmosphere interactions are included compared to when forcing variability is only based on CO2 changes. Thereby, these interactions also diminish the contribution of AIS variability to benthic δ18O fluctuations. Evolving bedrock topography during the early and mid-Miocene also reduces ice volume variability by 10 % under equal 40 kyr cycles of atmosphere and ocean forcing

    The Eocene-Oligocene boundary climate transition: an Antarctic perspective

    Get PDF
    Antarctica underwent a complex evolution over the course of the Cenozoic, which influenced the history of the Earth’s climate system. The Eocene-Oligocene boundary is a divide of this history when the ice-free ‘greenhouse world’ transitioned to the ‘icehouse’ with the glaciation of Antarctica. Prior to this, Antarctica experienced warm climates, peaking during Early Eocene when tropical-like conditions existed at the margins of the continent where geological evidence is present. Climate signals in the geological record show that the climate then cooled, but not enough to allow the existence of significant ice until the latest Eocene. Glacial deposits from several areas around the continental margin indicate that ice was present by the earliest Oligocene. This matches the major oxygen isotope positive shift captured by marine records. On land, vegetation was able to persist, but the thermophylic plants of the Eocene were replaced by shrubby vegetation with the southern beech Nothofagus, mosses and ferns, which survived in tundra-like conditions. Coupled climate–ice sheet modelling indicates that changing levels of atmospheric CO2 controlled Antarctica’s climate and the onset of glaciation. Factors such as mountain uplift, vegetation changes, ocean gateway opening and orbital forcing all played a part in cooling the polar climate, but only when CO2 levels reached critical thresholds was Antarctica tipped into an icy glacial world

    The Eocene-Oligocene boundary climate transition: An Antarctic perspective

    No full text
    Antarctica underwent a complex evolution over the course of the Cenozoic, which influenced the history of the Earth’s climate system. The Eocene-Oligocene boundary is a divide of this history when the ice-free ‘greenhouse world’ transitioned to the ‘icehouse’ with the glaciation of Antarctica. Prior to this, Antarctica experienced warm climates, peaking during Early Eocene when tropical-like conditions existed at the margins of the continent where geological evidence is present. Climate signals in the geological record show that the climate then cooled, but not enough to allow the existence of significant ice until the latest Eocene. Glacial deposits from several areas around the continental margin indicate that ice was present by the earliest Oligocene. This matches the major oxygen isotope positive shift captured by marine records. On land, vegetation was able to persist, but the thermophylic plants of the Eocene were replaced by shrubby vegetation with the southern beech Nothofagus, mosses and ferns, which survived in tundra-like conditions. Coupled climate–ice sheet modelling indicates that changing levels of atmospheric CO2 controlled Antarctica’s climate and the onset of glaciation. Factors such as mountain uplift, vegetation changes, ocean gateway opening and orbital forcing all played a part in cooling the polar climate, but only when CO2 levels reached critical thresholds was Antarctica tipped into an icy glacial world

    Antarctic environmental change and ice sheet evolution through the Miocene to Pliocene – a perspective from the Ross Sea and George V to Wilkes Land Coasts

    No full text
    The Miocene to Pliocene (Neogene) occurred between 23.04 and 2.58 million years ago and includes intervals of peak global warmth where Earth’s average surface temperature was up to 8℃ warmer than present. Major cooling steps also occurred, across which Antarctica’s ice sheets advanced to the continental shelf for the first time and sea ice expanded across the Southern Ocean. Knowledge of Antarctic environmental change and ice sheet variability through this dynamic period in Earth history has advanced over the past 15 years. Major field and ship-based efforts to obtain new geological information have been completed and significant advances in numerical modelling approaches have occurred. Integration of ice proximal data and coupled climate-ice sheet model outputs with high-resolution reconstructions of ice volume and temperature variability from deep sea δ18O records now offer detailed insight into thresholds and tipping points in Earth’s climate system. Here we review paleoenvironmental data through key episodes in the evolution of Neogene climate to include the Miocene Climatic Optimum (MCO), Middle Miocene Climate Transition (MMCT), Tortonian Thermal Maximum (TTM), Late Miocene Cooling (LMC), and Pliocene Warm Period (PWP). This review shows that Antarctica’s climate and ice sheets remained dynamic throughout the Neogene. Given the analogous nature of warm episodes in the Miocene and Pliocene to future projections, the environmental reconstructions presented in this chapter offer a stark warning about the potential future of the AIS if warming continues at its current rate. If average global surface warming above pre-industrial values exceeds 2℃, a threshold will be crossed and AIS instabilities would likely be irreversible on multi-century timescales
    corecore