11 research outputs found

    CMMSE algorithms for constructing doubly stochastic matrices with the relative gain array (combined matrix) A circle A(-T)

    Full text link
    [EN] The Combined matrix of a nonsingular matrix A is defined by phi(A)=A T where degrees means the Hadamard (entrywise) product. If the matrix A describes the relation between inputs and outputs in a multivariable process control, phi(A) describes the relative gain array (RGA) of the process and it defines the Bristol method (IEEE Trans Autom Control 1:133-134, 1966) often used for Chemical processes (McAvoy in Interaction analysis: principles and applications. Instrument Society of America, Pittsburgh, 1983; Papadourakis et al. in Ind Eng Chem Res 26(6):1259-1262, 1987; Wang et al. in Chem Eng Technol, 10.1002/ceat.201500202, 2016; Kariwala et al. in Ind Eng Chem Res 45(5):1751-1757, 10.1021/ie050790r, 2006; Golender et al. in J Chem Inf Comput Sci 21(4):196-204, 10.1021/ci00032a004, 1981). The combined matrix has been studied in several works such as Bru et al. (J Appl Math, 10.1155/2014/182354, 2014), Fiedler and Markham (Linear Algebra Appl 435:1945-1955, 2011) and Johnson and Shapiro (SIAM J Algebraic Discrete Methods 7:627-644, 1986). Since phi(A)=(cij) has the property of Sigma kcik=Sigma kckj=1,i,j, when phi(A)>= 0, phi(A) is a doubly stochastic matrix. In certain chemical engineering applications a diagonal of the RGA in wchich the entries are near 1 is used to determine the pairing of inputs and outputs for further design analysis. Applications of these matrices can be found in Communication Theory, related with the satellite-switched time division multiple-access systems, and about a doubly stochastic automorphism of a graph. In this paper we present new algorithms to generate doubly stochastic matrices with the Combined matrix using Hessenberg matrices in Sect.3 and orthogonal/unitary matrices in Sect.4. In addition, we discuss what kind of doubly stochastic matrices are obtained with our algorithms and the possibility of generating a particular doubly stochastic matrix by the map phi.This work has been supported by Spanish Ministerio de Economia y Competitividad Grants MTM2014-58159-P, MTM2017-85669-P and MTM2017-90682-REDT.Fuster Capilla, RR.; Gasso Matoses, MT.; Gimenez Manglano, MI. (2019). CMMSE algorithms for constructing doubly stochastic matrices with the relative gain array (combined matrix) A circle A(-T). Journal of Mathematical Chemistry. 57(7):1700-1709. https://doi.org/10.1007/s10910-019-01032-1S17001709577E. Bristol, On a new measure of interaction for multivariable process control. IEEE Trans. Autom. Control 1, 133–134 (1966)R.A. Brualdi, Some applications of doubly stochastic matrices. Linear Algebra Appl. 107, 77–100 (1988)R. Bru, M.T. Gassó, I. Giménez, M. Santana, Nonnegative combined matrices. J. Appl. Math. (2014). https://doi.org/10.1155/2014/182354J. Cremona, Letter to the Editor. Am. Math. Monthly 4, 757 (2014)M. Fiedler, Relations between the diagonal entries of two mutually inverse positive definite matrices. Czechosl. Math. J. 14, 39–51 (1964)M. Fiedler, T.L. Markham, Combined matrices in special classes of matrices. Linear Algebra Appl. 435, 1945–1955 (2011)F.R. Gantmacher, The theory of matrices (American Mathematical Society, Chelsea, 1960)V.E. Golender, V.V. Drboglav, A.B. Rosenblit, Graph potentials method and its application for chemical information processing. J. Chem. Inf. Comput. Sci. 21(4), 196–204 (1981). https://doi.org/10.1021/ci00032a004R.A. Horn, C.R. Johnson, Topics in matrix analysis (Cambridge University Press, Cambridge, 1991)C. Johnson, H. Shapiro, Mathematical aspects of the relarive gain array. SIAM J. Algebraic Discrete Methods 7, 627–644 (1986)V. Kariwala, S. Skogestad, J.F. Forbes, Relative gain array for norm-bounded uncertain systems. Ind. Eng. Chem. Res. 45(5), 1751–1757 (2006). https://doi.org/10.1021/ie050790rH. Liebeck, A. Osborne, The generation of all rational orthogonal matrices. Am. Math. Monthly 98(2), 131–133 (1991)T.J. McAvoy, Interaction Analysis: Principles and Applications (Instrument Society of America, Pittsburgh, 1983)B. Mourad, Generalization of some results concerning eigenvalues of a certain class of matrices and some applications. Linear Multilinear Algebra 61, 1234–1243 (2013)A. Papadourakis et al., Relative gain array for units in plants with recycle. Ind. Eng. Chem. Res. 26(6), 1259–1262 (1987)H. Wang et al., Design and control of extractive distillation based on an effective relative gain array. Chem. Eng. Technol. (2016). https://doi.org/10.1002/ceat.201500202M. Hovd, S. Skogestad, Pairing criteria for decentralized control of unstable plants. Ind. Eng. Chem. Res. 33(9), 2134–2139 (1994). https://doi.org/10.1021/ie00033a016H. Wang, Y. Li, S. Weiyi, Y. Zhang, J. Guo, C. Li, Design and control of extractive distillation based on effective relative gain array. Chem. Eng. Technol. 39, 1–9 (2016). https://doi.org/10.1002/ceat.20150020

    Combined matrices and conditioning

    Full text link
    [EN] In this work, we study a lower bound of the condition number of a matrix by its combined matrix. In particular, we construct a special combined matrix in such a way that the sums of its columns are lower bounds of the condition number of the matrix. Cases for special matrices as unitary matrices are considered.We thank the anonymous referees for their valuable reports that have improved this work. This work was partially sup-ported by Spanish grants MTM2017-85669-P and MTM2017-90682-REDT from "Ministerio de Economa y Competitividad", and by the Dominican Republic FONDOCYT grant number 2016-2017-057.Bru García, R.; Gasso Matoses, MT.; Santana-De Asis, MDJ. (2022). Combined matrices and conditioning. Applied Mathematics and Computation. 412:1-8. https://doi.org/10.1016/j.amc.2021.126549S1841

    Diagonal entries of the combined matrix of a totally negative matrix

    Full text link
    [EN] The combined matrix of a nonsingular matrix A is the Hadamard (entrywise) product . This paper deals with the characterization of the diagonal entries of a combined matrix C(A) of a given nonsingular real matrix A. A partial answer describing the diagonal entries of C(A) in the positive definite case was given by Fiedler in 1964. Recently in 2011, Fiedler and Markham characterized the sequence of diagonal entries of the combined matrix C(A) for any totally positive matrix A when the size is 3. For this case, we characterize totally negative matrices and we find necessary and sufficient conditions for the sequence of diagonal entries of C(A), in both cases, symmetric and nonsymmetric.This work was supported by Spanish DGI [grant number MTM-2014-58159-P]; Dominican Republic FONDOCYT [grant number 2015-1D2-166].Bru García, R.; Gasso Matoses, MT.; Gimenez Manglano, MI.; Santana-De Asis, MDJ. (2017). Diagonal entries of the combined matrix of a totally negative matrix. Linear and Multilinear Algebra. 65(10):1971-1984. https://doi.org/10.1080/03081087.2016.1261079S19711984651

    Combined matrices of sign regular matrices

    Full text link
    This is the author’s version of a work that was accepted for publication in Linear Algebra and its Applications. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Linear Algebra and its Applications, VOL 498, (2016). DOI 10.1016/j.laa.2014.12.010.The combined matrix of a nonsingular matrix A is the Hadamard (entry wise) product C(A) = A ◦ (A−1)T . Since each row and column sum of C(A) is equal to one, the combined matrix is doubly stochastic when it is nonnegative. In this work, we study the nonnegativity of the combined matrix of sign regular matrices, based upon their signature. In particular, a few coordinates of the signature ε of A play a crucial role in determining whether or not C(A) is nonnegative. © 2014 Elsevier Inc. All rights reserved.Research supported by Spanish DGI grant number MTM2010-18674.Bru García, R.; Gasso Matoses, MT.; Gimenez Manglano, MI.; Santana-De Asis, MDJ. (2016). Combined matrices of sign regular matrices. Linear Algebra and its Applications. 498:88-98. https://doi.org/10.1016/j.laa.2014.12.010S889849

    The Hadamard Product of a Nonsingular General H--Matrix and Its Inverse Transpose Is Diagonaly Dominant

    Get PDF
    [EN] We study the combined matrix of a nonsingular H-matrix. Iese matrices can belong to two diRerent H-matrices classes: the most common, invertible class, and one particular class named mixed class. DiRerent results regarding diagonal dominance of the inverse matrix and the combined matrix of a nonsingular H-matrix belonging to the referred classes are obtained. We conclude that the combined matrix of a nonsingular H-matrix is always diagonally dominant and then it is an H-matrix. In particular, the combined matrix in the invertible class remains in the same class.Ie authors thank the referee for suggesting changes that have improved the presentation of the paper. Iis research was supported by Spanish DGI Grant no. MTM2014-58159-P.Bru García, R.; Gasso Matoses, MT.; Gimenez Manglano, MI.; Scott, JA. (2015). The Hadamard Product of a Nonsingular General H--Matrix and Its Inverse Transpose Is Diagonaly Dominant. Journal of Applied Mathematics. 2015:1-6. https://doi.org/10.1155/2015/264680S162015Fiedler, M., & Markham, T. L. (1988). An inequality for the hadamard product of an M-matrix and an inverse M-matrix. Linear Algebra and its Applications, 101, 1-8. doi:10.1016/0024-3795(88)90139-5Johnson, C. R., & Shapiro, H. M. (1986). Mathematical Aspects of the Relative Gain Array (AAT)( A \circ A^{ - T} ). SIAM Journal on Algebraic Discrete Methods, 7(4), 627-644. doi:10.1137/0607069Fiedler, M., & Markham, T. L. (2011). Combined matrices in special classes of matrices. Linear Algebra and its Applications, 435(8), 1945-1955. doi:10.1016/j.laa.2011.03.054Fiedler, M. (2010). Notes on Hilbert and Cauchy matrices. Linear Algebra and its Applications, 432(1), 351-356. doi:10.1016/j.laa.2009.08.014Bru, R., Gassó, M. T., Giménez, I., & Santana, M. (2014). Nonnegative Combined Matrices. Journal of Applied Mathematics, 2014, 1-5. doi:10.1155/2014/182354Bru, R., Gassó, M. T., Giménez, I., & Santana, M. (2016). Combined matrices of sign regular matrices. Linear Algebra and its Applications, 498, 88-98. doi:10.1016/j.laa.2014.12.010Bristol, E. (1966). On a new measure of interaction for multivariable process control. IEEE Transactions on Automatic Control, 11(1), 133-134. doi:10.1109/tac.1966.1098266Horn, R. A., & Johnson, C. R. (1991). Topics in Matrix Analysis. doi:10.1017/cbo9780511840371Lynn, M. S. (1964). On the Schur product of H-matrices and non-negative matrices, and related inequalities. Mathematical Proceedings of the Cambridge Philosophical Society, 60(3), 425-431. doi:10.1017/s0305004100037932Johnson, C. R. (1977). A Hadamard product involving N-matrices. Linear and Multilinear Algebra, 4(4), 261-264. doi:10.1080/03081087708817160Berman, A., & Plemmons, R. J. (1994). Nonnegative Matrices in the Mathematical Sciences. doi:10.1137/1.9781611971262Bru, R., Corral, C., Giménez, I., & Mas, J. (2008). Classes of general H-matrices. Linear Algebra and its Applications, 429(10), 2358-2366. doi:10.1016/j.laa.2007.10.030Bru, R., Corral, C., Giménez, I., & Mas, J. (2009). Schur complement of generalH-matrices. Numerical Linear Algebra with Applications, 16(11-12), 935-947. doi:10.1002/nla.668Varga, R. S. (1976). On recurring theorems on diagonal dominance. Linear Algebra and its Applications, 13(1-2), 1-9. doi:10.1016/0024-3795(76)90037-9Bru, R., Cvetković, L., Kostić, V., & Pedroche, F. (2010). Characterization of α1 and α2-matrices. Central European Journal of Mathematics, 8(1), 32-40. doi:10.2478/s11533-009-0068-6Cvetković, L. (2006). H-matrix theory vs. eigenvalue localization. Numerical Algorithms, 42(3-4), 229-245. doi:10.1007/s11075-006-9029-

    Nonnegative combined matrices

    Get PDF
    The combined matrix of a nonsingular real matrix is the Hadamard (entrywise) product ∘ (−1) . It is well known that row (column) sums of combined matrices are constant and equal to one. Recently, some results on combined matrices of different classes of matrices have been done. In this work, we study some classes of matrices such that their combined matrices are nonnegative and obtain the relation with the sign pattern of . In this case the combined matrix is doubly stochastic.The authors would like to thank the referees for their suggestions that have improved the reading of this paper. This research is supported by Spanish DGI (Grant no. MTM2010-18674).Bru García, R.; Gasso Matoses, MT.; Gimenez Manglano, MI.; Santana, M. (2014). Nonnegative combined matrices. Journal of Applied Mathematics. 2014. https://doi.org/10.1155/2014/182354S2014Fiedler, M., & Markham, T. L. (2011). Combined matrices in special classes of matrices. Linear Algebra and its Applications, 435(8), 1945-1955. doi:10.1016/j.laa.2011.03.054Horn, R. A., & Johnson, C. R. (1991). Topics in Matrix Analysis. doi:10.1017/cbo9780511840371Brualdi, R. A. (1988). Some applications of doubly stochastic matrices. Linear Algebra and its Applications, 107, 77-100. doi:10.1016/0024-3795(88)90239-xMourad, B. (2013). Generalization of some results concerning eigenvalues of a certain class of matrices and some applications. Linear and Multilinear Algebra, 61(9), 1234-1243. doi:10.1080/03081087.2012.746330Bru, R., Corral, C., Giménez, I., & Mas, J. (2008). Classes of general H-matrices. Linear Algebra and its Applications, 429(10), 2358-2366. doi:10.1016/j.laa.2007.10.030Fiedler, M., & Hall, F. J. (2012). G-matrices. Linear Algebra and its Applications, 436(3), 731-741. doi:10.1016/j.laa.2011.08.001Ando, T. (1987). Totally positive matrices. Linear Algebra and its Applications, 90, 165-219. doi:10.1016/0024-3795(87)90313-2Peña, J. M. (2003). On nonsingular sign regular matrices. Linear Algebra and its Applications, 359(1-3), 91-100. doi:10.1016/s0024-3795(02)00437-

    Los retornables: evaluación continúa y entre pares

    Full text link
    [ES] En este trabajo presentamos una herramienta de enseñanza llamada retornable. Un retornable es más que un conjunto de ejercicios de clase tipo examen, su interés radica en la forma en que se utiliza. El retornable se ha convertido en una herramienta de motivación, útil para fomentar el trabajo de los estudiantes sobre todo en las primeras etapas del curso y para ayudar al profesor a la valuación continua de los estudiantes.[EN] In this paper, we present the returnable, a tool to assist teachers and students in the learning process. A returnable, which at first glance seems a simple set of test exercises, becomes in practice a powerful tool to assist learning. The returnable is used to motivate the student, especially during the first stages of the course, and to help the teacher to assess student's work in a continuous wayEste trabajo ha sido financiado en parte por la Escola Tècnica Superior d'Enginyeria Informàtica de la Universitat Politècnica de València y por el programa Proyectos de Innovación y Mejora Educativa PIME/2013/A/026/B de la Universitat Politècnica de ValènciaMartí-Campoy, A.; Petit Martí, SV.; Gasso Matoses, MT.; Atienza-Vanacloig, V.; Rodríguez-Ballester, F. (2014). Los retornables: evaluación continúa y entre pares. Editorial Universitat Politècnica de València. 815-834. http://hdl.handle.net/10251/168742S81583

    Experiencia de evaluación por pares usando retornables en el Grado de Ingeniería Informática (UPV)

    Full text link
    [EN] This work present the results of a peer assessment experiment performed with a learning tool named “returnable” in the subjects “Algebra” and “Computer Fundamentals” from the Computer Engineering degree that is conducted at Universitat Politècnica de València (UPV). A returnable is a set of exercises that are similar to those that can be found in a conventional exam and that are carried out after the corresponding topic has been taught. The main benefit of the tool comes from its usage in a peer assessment context since the feedback to the students is delivered earlier. Moreover, it allows the development of the high-level skills that are necessary to analyze and evaluate other student returnables. The main goal of the experiment is to validate the marks that the students obtain from their peers. The validation will increase the usefulness of the returnable tool as a feedback mechanism and for the overall course evaluation.[ES] En este trabajo, se presenta una experiencia de evaluación por pares utilizada con la herramienta “retornables” en las asignaturas de Álgebra y de Fundamentos de Computadores en el Grado de Ingeniería Informática. Los “retornables” son una colección de ejercicios representativos tipo examen, realizado al finalizar cada tema. Su principal interés radica en la evaluación por pares que los alumnos deben llevar a cabo. De esta forma además de tener un feedback temprano que les sirve de entrenamiento para los siguientes actos de evaluación, desarrollan habilidades de alto nivel como son analizar y evaluar el trabajo de un compañero. El objetivo de este trabajo es determinar en qué medida es válida o no la calificación que dan los alumnos a sus compañeros. Esta validación es especialmente relevante para el alumno receptor de la calificación, y también para el profesor que quiera utilizar dicha calificación en su evaluación. El trabajo concluye analizando los motivos que justifican estos resultados y dando pautas sobre el uso correcto que cabe dar a esta herramienta atendiendo a las pequeñas limitaciones detectadas. Este trabajo ha sido financiado por el programa Proyectos de Innovación y Mejora Educativa (PIME B05 16_17) y la ETSINF de la UPV.Gasso Matoses, MT.; Martí Campoy, A.; Atienza Vanacloig, VL.; Petit Martí, SV.; Rodríguez Ballester, F. (2018). Experiencia de evaluación por pares usando retornables en el Grado de Ingeniería Informática (UPV). En IN-RED 2018. IV Congreso Nacional de Innovación Educativa y Docencia en Red. Editorial Universitat Politècnica de València. 867-874. https://doi.org/10.4995/INRED2018.2018.8745OCS86787

    Adaptación de álgebra al EEES

    Full text link
    [ES] Durante el curso 2010-11 se ha implantado la titulación de Grado en Ingeniería Informática en la Escuela Técnica Superior de Ingeniería Informática (ETSINF) de la Universidad Politécnica de Valencia (UPV). Álgebra es una de las asignaturas básicas de primer curso de este nuevo grado y sus contenidos constituyen una parte importante de la base de otras asignaturas dentro del nuevo plan de estudios. Dada la importancia que los conceptos de álgebra tienen en la formación de un graduado en informática, al programar la adaptación de la asignatura al EEES hemos considerado prioritario adecuar las metodologías docentes y las estrategias de evaluación para mejorar la adquisición de las competencias que aporta nuestra asignatura. En este trabajo presentamos las acciones realizadas durante el curso 2010-11: preparar material docente adecuado, introducir la evaluación a través de PoliformaT, realizar proyectos donde se resalta la parte práctica de la asignatura, a fin de mejorar el aprendizaje de nuestros alumnos.Sanabria-Codesal, E.; Alegre Gil, MC.; Bravo Villar, MP.; Esteban Romero, R.; Fuster Capilla, R.; Gasso Matoses, MT.; Martínez-Pastor, A.... (2011). Adaptación de álgebra al EEES. Instituto de Ciencias de la Educación de la Universidad de Alicante. 921-931. http://hdl.handle.net/10251/178210S92193

    Movimientos en el plano

    Full text link
    El usuario elige una figura y dos transformaciones en el plano y el sistema las aplica sucesivamente, mostrando la figuar intermedia y la final. Cada transformación requiere uno o dos parámetros, por ejemplo las coordenadas del vector desplazamiento, el ángulo de giro, los coeficientes de la escalación o la dirección del eje de simetría. El valor del segundo parámetro se ignora si no es necesario.https://laboratoriosvirtuales.upv.es/eslabon/Ejercicio?do=transfor1Gasso Matoses, MT. (2008). Movimientos en el plano. http://hdl.handle.net/10251/203
    corecore