2,545 research outputs found

    The anomalous chiral perturbation theory meson Lagrangian to order p6p^6 revisited

    Get PDF
    We present a revised and extended construction of the mesonic Lagrangian density in chiral perturbation theory (ChPT) at order p6p^6 in the anomalous (or epsilon) sector, L6,ϵ{\cal{L}}_{6,\epsilon}. After improving several aspects of the strategy we used originally, i.e., a more efficient application of partial integration, the implementation of so-called Bianchi identities, and additional trace relations, we find the new monomial sets to include 24 SU(Nf)SU(N_f), 23 SU(3), and 5 SU(2) elements. Furthermore, we introduce 8 supplementary terms due to the extension of the chiral group to SU(Nf)L×SU(Nf)R×U(1)VSU(N_f)_L \times SU(N_f)_R \times U(1)_V.Comment: 21 pages, Latex, using RevTe

    Pion-Nucleon Sigma Term in Lattice QCD

    Get PDF
    We calculate both connected and disconnected contribution to the π\pi-NN σ\sigma-term in quenched lattice QCD with Wilson quark action on a 123×2012^3\times 20 lattice at β=5.7\beta=5.7. The latter is evaluated with the aid of the variant wall source method, which was previously applied successfully for extraction of π\pi-π\pi scattering lengths and η\eta^\prime meson mass. We found that the disconnected contribution is about twice larger than the connected one. The value for the full π\pi-NN σ\sigma term σ=4060\sigma=40-60 MeV is consistent with the experimental estimates. The nucleon matrix element of the strange quark density sˉs\bar s s is fairly large in our result.Comment: 11 pages. Latex file. Figures are also included as ps file

    Pion propagation in real time field theory at finite temperature

    Get PDF
    We describe how the thermal counterpart of a vacuum two-point function may be obtained in the real time formalism in a simple way by using directly the 2×22\times 2 matrices that different elements acquire in this formalism. Using this procedure we calculate the analytic (single component) thermal amplitude for the pion pole term in the ensemble average of two axial-vector currents to two loops in chiral perturbation theory. The general expressions obtained for the effective mass and decay constants of the pion are evaluated in the chiral and the nonrelativistic limits. We also investigate the effect of massive states on these effective parameters.Comment: 17 pages TeX and 9 eps figure

    Two-Point Functions and S-Parameter in QCD-like Theories

    Full text link
    We calculated the vector, axial-vector, scalar and pseudo-scalar two-point functions up to two-loop level in the low-energy effective field theory for three different QCD-like theories. In addition we also calculated the pseudo-scalar decay constant GMG_M. The QCD-like theories we used are those with fermions in a complex, real or pseudo-real representation with in general n flavours. These case correspond to global symmetry breaking pattern of SU(n)L×SU(n)RSU(n)VSU(n)_L\times SU(n)_R\to SU(n)_V, SU(2n)SO(2n)SU(2n)\to SO(2n) or SU(2n)Sp(2n)SU(2n)\to Sp(2n). We also estimated the S parameter for those different theories.Comment: 29 page

    Service-based survey of dystonia in Munich

    Get PDF
    We performed a service-based epidemiological study of dystonia in Munich, Germany. Due to favourable referral and treatment patterns in the Munich area, we could provide confident data from dystonia patients seeking botulinum toxin treatment. A total of 230 patients were ascertained, of whom 188 had primary dystonia. Point prevalence ratios were estimated to be 10.1 (95% confidence interval 8.4-11.9) per 100,000 for focal and 0.3 (0.0-0.6) for generalised primary dystonia. The most common focal primary dystonias were cervical dystonia with 5.4 (4.2-6.7) and essential blepharospasm with 3.1 (2.1-4.1) per 100,000 followed by laryngeal dystonia (spasmodic dysphonia) with 1.0 (0.4-1.5) per 100,000. Copyright (C) 2002 S. Karger AG, Base

    Light quarks masses and condensates in QCD

    Get PDF
    We review some theoretical and phenomenological aspects of the scenario in which the spontaneous breaking of chiral symmetry is not triggered by a formation of a large condensate . Emphasis is put on the resulting pattern of light quark masses, on the constraints arising from QCD sum rules and on forthcoming experimental tests.Comment: 23 pages, 12 Postscript figures, LaTeX, uses svcon2e.sty, to be published in the Proceedings of the Workshop on Chiral Dynamics 1997, Mainz, Germany, Sept. 1-5, 199

    How good is the quenched approximation of QCD?

    Get PDF
    The quenched approximation for QCD is, at present and in the foreseeable future, unavoidable in lattice calculations with realistic choices of the lattice spacing, volume and quark masses. In this talk, I review an analytic study of the effects of quenching based on chiral perturbation theory. Quenched chiral perturbation theory leads to quantitative insight on the difference between quenched and unquenched QCD, and reveals clearly some of the diseases which are expected to plague quenched QCD. Uses jnl.tex and epsf.tex for figure 3. Figures 1 and 2 not included, sorry. Available as hardcopy on request.Comment: 22 pages, Wash. U. HEP/94-62 (Forgotten set of macros now included, sorry.

    Comment on DsDsπ0D_s^* \to D_s \pi^0 Decay

    Full text link
    We calculate the rate for DsDsπ0D_s^* \rightarrow D_s \pi^0 decay using Chiral Perturbation Theory. This isospin violating process results from π0\pi^0 - η\eta mixing, and its amplitude is proportional to (mdmu)/(ms(mu+md)/2)(m_d - m_u)/\bigl(m_s-(m_u+m_d)/2 \bigr). Experimental information on the branching ratio for DsDsπ0D_s^* \rightarrow D_s \pi^0 can provide insight into the pattern of SU(3)SU(3) violation in radiative DD^* decays.Comment: 7 pages with 2 figures not included but available upon request, CALT-68-191

    The Decuplet Revisited in χ\chiPT

    Full text link
    The paper deals with two issues. First, we explore the quantitiative importance of higher multiplets for properties of the Δ\Delta decuplet in chiral perturbation theory. In particular, it is found that the lowest order one--loop contributions from the Roper octet to the decuplet masses and magnetic moments are substantial. The relevance of these results to the chiral expansion in general is discussed. The exact values of the magnetic moments depend upon delicate cancellations involving ill--determined coupling constants. Second, we present new relations between the magnetic moments of the Δ\Delta decuplet that are independent of all couplings. They are exact at the order of the chiral expansion used in this paper.Comment: 7 pages of double column revtex, no figure

    Strong Interactions at Low Energy

    Get PDF
    The lectures review some of the basic concepts relevant for an understanding of the low energy properties of the strong interactions: chiral symmetry, spontaneous symmetry breakdown, Goldstone bosons, quark condensate. The effective field theory used to analyze the low energy structure is briefly sketched. As an illustration, I discuss the implications of the recent data on the decay KππeνK\to \pi\pi e\nu for the magnitude of the quark condensate.Comment: Lectures given at the school of physics "Understanding the structure of hadrons", Prague, July 2001, 20 p
    corecore