479 research outputs found

    Unidentified EGRET Sources and the Extragalactic Gamma-Ray Background

    Get PDF
    The large majority of EGRET point sources remain to this day without an identified low-energy counterpart. Whatever the nature of the EGRET unidentified sources, faint unresolved objects of the same class must have a contribution to the diffuse gamma-ray background: if most unidentified objects are extragalactic, faint unresolved sources of the same class contribute to the background, as a distinct extragalactic population; on the other hand, if most unidentified sources are Galactic, their counterparts in external galaxies will contribute to the unresolved emission from these systems. Understanding this component of the gamma-ray background, along with other guaranteed contributions from known sources, is essential in any attempt to use gamma-ray observations to constrain exotic high-energy physics. Here, we follow an empirical approach to estimate whether a potential contribution of unidentified sources to the extragalactic gamma-ray background is likely to be important, and we find that it is. Additionally, we comment on how the anticipated GLAST measurement of the diffuse gamma-ray background will change, depending on the nature of the majority of these sources.Comment: 6 pages, 3 figures, to appear in proceedings of "The Multi-Messenger Approach to High Energy Gamma-Ray Sources", Barcelona, 4-7 July 2006; comments welcom

    A luminosity constraint on the origin of unidentified high energy sources

    Full text link
    The identification of point sources poses a great challenge for the high energy community. We present a new approach to evaluate the likelihood of a set of sources being a Galactic population based on the simple assumption that galaxies similar to the Milky Way host comparable populations of gamma-ray emitters. We propose a luminosity constraint on Galactic source populations which complements existing approaches by constraining the abundance and spatial distribution of any objects of Galactic origin, rather than focusing on the properties of a specific candidate emitter. We use M31 as a proxy for the Milky Way, and demonstrate this technique by applying it to the unidentified EGRET sources. We find that it is highly improbable that the majority of the unidentified EGRET sources are members of a Galactic halo population (e.g., dark matter subhalos), but that current observations do not provide any constraints on all of these sources being Galactic objects if they reside entirely in the disk and bulge. Applying this method to upcoming observations by the Fermi Gamma-ray Space Telescope has the potential to exclude association of an even larger number of unidentified sources with any Galactic source class.Comment: 18 pages, 4 figures, to appear in JPhys

    Churn, Baby, Churn: Strategic Dynamics Among Dominant and Fringe Firms in a Segmented Industry

    Get PDF
    This paper integrates and extends the literatures on industry evolution and dominant firms to develop a dynamic theory of dominant and fringe competitive interaction in a segmented industry. It argues that a dominant firm, seeing contraction of growth in its current segment(s), enters new segments in which it can exploit its technological strengths, but that are sufficiently distant to avoid cannibalization. The dominant firm acts as a low-cost Stackelberg leader, driving down prices and triggering a sales takeoff in the new segment. We identify a “churn” effect associated with dominant firm entry: fringe firms that precede the dominant firm into the segment tend to exit the segment, while new fringe firms enter, causing a net increase in the number of firms in the segment. As the segment matures and sales decline in the segment, the process repeats itself. We examine the predictions of the theory with a study of price, quantity, entry, and exit across 24 product classes in the desktop laser printer industry from 1984 to 1996. Using descriptive statistics, hazard rate models, and panel data methods, we find empirical support for the theoretical predictions

    Dark Matter Annihilation around Intermediate Mass Black Holes: an update

    Full text link
    The formation and evolution of Black Holes inevitably affects the distribution of dark and baryonic matter in the neighborhood of the Black Hole. These effects may be particularly relevant around Supermassive and Intermediate Mass Black Holes (IMBHs), the formation of which can lead to large Dark Matter overdensities, called {\em spikes} and {\em mini-spikes} respectively. Despite being larger and more dense, spikes evolve at the very centers of galactic halos, in regions where numerous dynamical effects tend to destroy them. Mini-spikes may be more likely to survive, and they have been proposed as worthwhile targets for indirect Dark Matter searches. We review here the formation scenarios and the prospects for detection of mini-spikes, and we present new estimates for the abundances of mini-spikes to illustrate the sensitivity of such predictions to cosmological parameters and uncertainties regarding the astrophysics of Black Hole formation at high redshift. We also connect the IMBHs scenario to the recent measurements of cosmic-ray electron and positron spectra by the PAMELA, ATIC, H.E.S.S., and Fermi collaborations.Comment: 12 pages, 7 figures. Invited contribution to NJP Focus Issue on "Dark Matter and Particle Physics

    Transcriptome profiling of the small intestinal epithelium in germfree versus conventional piglets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To gain insight into host-microbe interactions in a piglet model, a functional genomics approach was used to address the working hypothesis that transcriptionally regulated genes associated with promoting epithelial barrier function are activated as a defensive response to the intestinal microbiota. Cesarean-derived germfree (GF) newborn piglets were colonized with adult swine feces, and villus and crypt epithelial cell transcriptomes from colonized and GF neonatal piglets were compared using laser-capture microdissection and high-density porcine oligonucleotide microarray technology.</p> <p>Results</p> <p>Consistent with our hypothesis, resident microbiota induced the expression of genes contributing to intestinal epithelial cell turnover, mucus biosynthesis, and priming of the immune system. Furthermore, differential expression of genes associated with antigen presentation (pan SLA class I, <it>B2M</it>, <it>TAP1 </it>and <it>TAPBP</it>) demonstrated that microbiota induced immune responses using a distinct regulatory mechanism common for these genes. Specifically, gene network analysis revealed that microbial colonization activated both type I (IFNAR) and type II (IFNGR) interferon receptor mediated signaling cascades leading to enhanced expression of signal transducer and activator of transcription 1 (STAT1), STAT2 and IFN regulatory factor 7 (IRF7) transcription factors and the induction of IFN-inducible genes as a reflection of intestinal epithelial inflammation. In addition, activated RNA expression of NF-kappa-B inhibitor alpha (<it>NFκBIA</it>; a.k.a I-kappa-B-alpha, IKBα) and toll interacting protein (<it>TOLLIP</it>), both inhibitors of inflammation, along with downregulated expression of the immunoregulatory transcription factor GATA binding protein-1 (<it>GATA1</it>) is consistent with the maintenance of intestinal homeostasis.</p> <p>Conclusion</p> <p>This study supports the concept that the intestinal epithelium has evolved to maintain a physiological state of inflammation with respect to continuous microbial exposure, which serves to sustain a tight intestinal barrier while preventing overt inflammatory responses that would compromise barrier function.</p

    Interface Controlled Thermal Resistances of Ultra-Thin Chalcogenide-Based Phase Change Memory Devices

    Get PDF
    Phase change memory (PCM) is a rapidly growing technology that not only offers advancements in storage-class memories but also enables in-memory data processing to overcome the von Neumann bottleneck. In PCMs, data storage is driven by thermal excitation. However, there is limited research regarding PCM thermal properties at length scales close to the memory cell dimensions. Our work presents a new paradigm to manage thermal transport in memory cells by manipulating the interfacial thermal resistance between the phase change unit and the electrodes without incorporating additional insulating layers. Experimental measurements show a substantial change in interfacial thermal resistance as GST transitions from cubic to hexagonal crystal structure, resulting in a factor of 4 reduction in the effective thermal conductivity. Simulations reveal that interfacial resistance between PCM and its adjacent layer can reduce the reset current for 20 and 120 nm diameter devices by up to ~ 40% and ~ 50%, respectively. These thermal insights present a new opportunity to reduce power and operating currents in PCMs
    • …
    corecore