61 research outputs found
Impact of a probiotic fermented milk in the gut ecosystem and in the systemic immunity using a non-severe protein-energy-malnutrition model in mice
<p>Abstract</p> <p>Background</p> <p>Malnutrition affects the immune response, causing a decrease of defence mechanisms and making the host more susceptible to infections. Probiotics can reconstitute the intestinal mucosa and stimulate local and systemic immunity. The aim of this work was evaluate the effects of a probiotic fermented milk as a complement of a re-nutrition diet, on the recovery of the intestinal barrier, and mucosal and systemic immune functions in a murine model of non-severe protein-energy-malnutrition. Its potential protection against <it>Salmonella enterica </it>serovar Typhimurium (<it>S</it>. Typhimurium) infection was also analyzed.</p> <p>Methods</p> <p>Mice were undernourished and divided into 3 groups according to the dietary supplement received during re-nutrition (milk, probiotic fermented milk or its bacterial free supernatant) and compared to well-nourished and malnourished mice. They were sacrificed previous to the re-nutrition and 5 days post re-nutrition. The phagocytic activity of macrophages from spleen and peritoneum and the changes in the intestinal histology and microbiota were evaluated. Different immune cell populations and cytokine productions were analyzed in the small intestine tissues. The effect of the re-nutrition supplements on the systemic immunity using OVA antigen and against an infection with <it>S. </it>Typhimurium was also studied.</p> <p>Results</p> <p>Probiotic fermented milk was the most effective re-nutrition diet that improved the intestinal microbiota. Its administration also increased the number of IgA+ cells, macrophages and dendritic cells. The production of different cytokine (IFN-γ, TNF-α, IL-12) by these cells and the phagocytic activity in peritoneum and spleen was also increased. This re-nutrition diet also stimulated the systemic immune response against OVA antigen which was diminished after the malnutrition period and also improved the host response against <it>S. </it>Typhimurium, decreasing the spread of pathogenic bacteria to the liver and the spleen. The importance of the metabolites released during milk fermentation was also demonstrated through the analysis of the bacterial free supernatant obtained from the probiotic fermented milk, but the whole product showed the best effects in the parameters evaluated in this study.</p> <p>Conclusions</p> <p>The administration of probiotic fermented milk as a dietary supplement during the re-nutrition process in a murine immunodeficiency model by malnutrition could be a good adjuvant diet to improve the gut and systemic immune response for the protection against <it>Salmonella </it>infection.</p
The Weaker Sex? The Propensity for Male-Biased Piglet Mortality
For the most part solutions to farm animal welfare issues, such as piglet mortality, are likely to lie within the scientific disciplines of environmental design and genetic selection, however understanding the ecological basis of some of the complex dynamics observed between parent and offspring could make a valuable contribution. One interesting, and often discussed, aspect of mortality is the propensity for it to be sex-biased. This study investigated whether known physiological and behavioural indicators of piglet survival differed between the sexes and whether life history strategies (often reported in wild or feral populations) relating to parental investment were being displayed in a domestic population of pigs. Sex ratio (proportion of males (males/males+females)) at birth was 0.54 and sex allocation (maternal investment measured as piglet birth weight/litter weight) was statistically significantly male-biased at 0.55 (t35 = 2.51 P = 0.017), suggesting that sows invested more in sons than daughters during gestation. Despite this investment in birth weight, a known survival indicator, total pre-weaning male mortality was statistically significantly higher than female mortality (12% vs. 7% respectively z = 2.06 P = 0.040). Males tended to suffer from crushing by the sow more than females and statistically significantly more males died from disease-related causes. Although males were born on average heavier, with higher body mass index and ponderal index, these differences were not sustained. In addition male piglets showed impaired thermoregulation compared to females. These results suggest male-biased mortality exists despite greater initial maternal investment, and therefore reflects the greater susceptibility of this sex to causal mortality factors. Life history strategies are being displayed by a domestic population of pigs with sows in this study displaying a form of parental optimism by allocating greater resources at birth to males and providing an over-supply of this more vulnerable sex in expectation of sex-biased mortality
Herbal remedy knowledge acquisition and transmission among the Yucatec Maya in Tabi, Mexico: a cross-sectional study
BACKGROUND: Ethnobotanical knowledge continues to be important for treating illness in many rural communities, despite access to health care clinics and pharmaceuticals. However, access to health care clinics and other modern services can have an impact on the distribution of medical ethnobotanical knowledge. Many factors have been shown to be associated with distributions in this type of knowledge. The goal of the sub-analyses reported in this paper was to better understand the relationship between herbal remedy knowledge, and two such factors, age and social network position, among the Yucatec Maya in Tabi, Yucatan. METHODS: The sample consisted of 116 Yucatec Maya adults. Cultural consensus analysis was used to measure variation in herbal remedy knowledge using competence scores, which is a measure of participant agreement within a domain. Social network analysis was used to measure individual position within a network using in-degree scores, based on the number of people who asked an individual about herbal remedies. Surveys were used to capture relevant personal attributes, including age. RESULTS: Analysis revealed a significant positive correlation between age and the herbal medicine competence score for individuals 45 and under, and no relationship for individuals over 45. There was an insignificant relationship between in-degree and competence scores for individuals 50 and under and a significant positive correlation for those over 50. CONCLUSIONS: There are two possible mechanisms that could account for the differences between cohorts: 1) knowledge accumulation over time; and/or 2) the stunting of knowledge acquisition through delayed acquisition, competing treatment options, and changes in values. Primary ethnographic evidence suggests that both mechanisms may be at play in Tabi. Future studies using longitudinal or cross-site comparisons are necessary to determine the whether and how the second mechanism is influencing the different cohorts.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]
International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis
Objective In this consensus statement, an international panel of experts deliver their opinions on key questions regarding the contribution of the human microbiome to carcinogenesis. Design International experts in oncology and/or microbiome research were approached by personal communication to form a panel. A structured, iterative, methodology based around a 1-day roundtable discussion was employed to derive expert consensus on key questions in microbiome-oncology research. Results Some 18 experts convened for the roundtable discussion and five key questions were identified regarding: (1) the relevance of dysbiosis/an altered gut microbiome to carcinogenesis; (2) potential mechanisms of microbiota-induced carcinogenesis; (3) conceptual frameworks describing how the human microbiome may drive carcinogenesis; (4) causation versus association; and (5) future directions for research in the field. The panel considered that, despite mechanistic and supporting evidence from animal and human studies, there is currently no direct evidence that the human commensal microbiome is a key determinant in the aetiopathogenesis of cancer. The panel cited the lack of large longitudinal, cohort studies as a principal deciding factor and agreed that this should be a future research priority. However, while acknowledging gaps in the evidence, expert opinion was that the microbiome, alongside environmental factors and an epigenetically/genetically vulnerable host, represents one apex of a tripartite, multidirectional interactome that drives carcinogenesis. Conclusion Data from longitudinal cohort studies are needed to confirm the role of the human microbiome as a key driver in the aetiopathogenesis of cancer
- …