11 research outputs found

    Airborne full polarization radiometry using the MSFC Advanced Microwave Precipitation Radiometer (AMPR)

    Get PDF
    The applications of vertically and horizontally polarized brightness temperatures in both atmospheric and surface remote sensing have been long recognized by many investigators, particularly those studying SMMR and SSM/I data. Here, the large contrast between the first two Stokes' parameters (T(sub V) and T(sub H)) can be used for detection of sea ice, measurement of ocean surface wind speed, and measurement of cloud and water vapor opacity. High-resolution aircraft data from instruments such as the NASA/MSFC AMPR is crucial for verifying radiative transfer models and developing retrieval algorithms. Currently, the AMPR is outfitted with single-polarization channels at 10, 18, 37 and 85 GHz. To increase its utility, it is proposed that additional orthogonal linearly polarized channels be added to the AMPR. Since the AMPR's feedhorns are already configured for dual orthogonal linearly polarized modes, this would require only a duplication of the currently existing receivers. To circumvent the resulting polarization basis skew caused by the cross-track scanning mechanism, the technique of Electronic Polarization Basis Rotation is proposed to be implemented. Implementation of EPBR requires precise measurement of the third Stokes parameter and will eliminate polarization skew by allowing the feedhorn basis skew angle to be corrected in software. In addition to upgrading AMPR to dual polarization capability (without skew), the modifications will provide an opportunity to demonstrate EPBR on an airborne platform. This is a highly desirable intermediate step prior to satellite implementation

    Thin Sea-Ice Thickness as Inferred from Passive Microwave and In Situ Observations

    Get PDF
    Since microwave radiometric signals from sea-ice strongly reflect physical conditions of a layer near the ice surface, a relationship of brightness temperature with thickness is possible especially during the early stages of ice growth. Sea ice is most saline during formation stage and as the salinity decreases with time while at the same time the thickness of the sea ice increases, a corresponding change in the dielectric properties and hence the brightness temperature may occur. This study examines the extent to which the relationships of thickness with brightness temperature (and with emissivity) hold for thin sea-ice, approximately less than 0.2 -0.3 m, using near concurrent measurements of sea-ice thickness in the Sea of Okhotsk from a ship and passive microwave brightness temperature data from an over-flying aircraft. The results show that the brightness temperature and emissivity increase with ice thickness for the frequency range of 10-37 GHz. The relationship is more pronounced at lower frequencies and at the horizontal polarization. We also established an empirical relationship between ice thickness and salinity in the layer near the ice surface from a field experiment, which qualitatively support the idea that changes in the near-surface brine characteristics contribute to the observed thickness-brightness temperature/emissivity relationship. Our results suggest that for thin ice, passive microwave radiometric signals contain, ice thickness information which can be utilized in polar process studies

    Physical and Radiative Characteristic and Long-term Variability of the Okhotsk Sea Ice Cover

    Get PDF
    Much of what we know about the large scale characteristics of the Okhotsk Sea ice cover has been provided by ice concentration maps derived from passive microwave data. To understand what satellite data represent in a highly divergent and rapidly changing environment like the Okhotsk Sea, we take advantage of concurrent satellite, aircraft, and ship data acquired on 7 February and characterized the sea ice cover at different scales from meters to hundreds of kilometers. Through comparative analysis of surface features using co-registered data from visible, infrared and microwave channels we evaluated the general radiative and physical characteristics of the ice cover as well as quantify the distribution of different ice types in the region. Ice concentration maps from AMSR-E using the standard sets of channels, and also only the 89 GHz channel for optimal resolution, are compared with aircraft and high resolution visible data and while the standard set provides consistent results, the 89 GHz provides the means to observe mesoscale patterns and some unique features of the ice cover. Analysis of MODIS data reveals that thick ice types represents about 37% of the ice cover indicating that young and new ice types represent a large fraction of the ice cover that averages about 90% ice concentration according to passive microwave data. These results are used to interpret historical data that indicate that the Okhotsk Sea ice extent and area are declining at a rapid rate of about -9% and -12 % per decade, respectively

    Physical and Radiative Characteristics and Long Term Variability of the Okhotsk Sea Ice Cover

    Get PDF
    Much of what we know about the large scale characteristics of the Okhotsk Sea ice cover comes from ice concentration maps derived from passive microwave data. To understand what these satellite data represents in a highly divergent and rapidly changing environment like the Okhotsk Sea, we analyzed concurrent satellite, aircraft, and ship data and characterized the sea ice cover at different scales from meters to tens of kilometers. Through comparative analysis of surface features using co-registered data from visible, infrared and microwave channels we evaluated how the general radiative and physical characteristics of the ice cover changes as well as quantify the distribution of different ice types in the region. Ice concentration maps from AMSR-E using the standard sets of channels, and also only the 89 GHz channel for optimal resolution, are compared with aircraft and high resolution visible data and while the standard set provides consistent results, the 89 GHz provides the means to observe mesoscale patterns and some unique features of the ice cover. Analysis of MODIS data reveals that thick ice types represents about 37% of the ice cover indicating that young and new ice represent a large fraction of the lice cover that averages about 90% ice concentration, according to passive microwave data. A rapid decline of -9% and -12 % per decade is observed suggesting warming signals but further studies are required because of aforementioned characteristics and because the length of the ice season is decreasing by only 2 to 4 days per decade

    VALIDATION OF AMSR-E ICE CONCENTRATION & THICKNESS IN THE OKHOTSK SEA

    No full text
    The data from aircraft and ship campaigns in February 2003 in conjunction with high resolution satellite images for validating sea ice concentrations and thickness derived from AMSR-E brightness temperatures are presented. Patrol Vessel "SOYA" conducted time series observations of sea ice parameters such as ice type, floe size, snow thickness, density, grain size on sea ice and ice surface temperature, and salinity. Surface data by ship were used to interpret aircraft microwave (PSR) and visible channel data obtained by the high resolution Landsat-7 and MODIS images. The latter data were utilized to interpret the ice concentration derived from AMSR-E. The co-registered images of aircraft PSR, Landsat-7 and MODIS data exhibit good coherence in signatures. In highly consolidated ice cover, the ice concentrations were in good agreement within 5 to 10% in ice concentration. However, in highly divergent areas, the derived ice concentration has a negative bias due to the dominant presence of new ice. The new ice has relatively lower emmissivity than first year ice which is snow cover and is affected with waves and wetness by flooding. The relationship between the thickness and brightness temperature of sea ice was obtained in detai

    Exploring scaling issues by using NASA Cold Land Processes Experiment(CLPX-1, IOP3) radiometric data

    No full text
    The NASA Cold-land Processes Field Experiment-1 (CLPX-1) involved several instruments in order to acquire data at different spatial resolutions. Indeed, one of the main tasks of CLPX-1 was to explore scaling issues associated with microwave remote sensing of snowpacks. To achieve this task, microwave brightness temperatures collected at 18.7, 36.5, and 89 GHz at LSOS test site by means of the University of Tokyo s Ground Based Microwave Radiometer-7 (GBMR-7) were compared with brightness temperatures recorded by the NOAA Polarimetric Scanning Radiometer (PSR/A) and by SSM/I and AMSR-E radiometers. Differences between different scales observations were observed and they may be due to the topography of the terrain and to observed footprints. In the case of satellite and airborne data, indeed, it is necessary to consider the heterogeneity of the terrain and the presence of trees inside the observed scene becomes a very important factor. Also when comparing data acquired only by the two satellites, differences were found. Different acquisition times and footprint positions, together with different calibration and validation procedures, can be responsible for the observed differences
    corecore