3 research outputs found

    Impact of climatic conditions on outbreaks of bacterial spot on tomato and pepper caused by Xanthomonas vesicatoria and Xanthomonas euvesicatoria

    Get PDF
    Seed-borne bacterial pathogens of tomato and pepper are of major concern worldwide. Xanthomonas vesicatoria (Xv) and Xanthomonas euvesicatoria (Xe), the causal agents of bacterial leaf spot, and Clavibacter michiganensis subsp. michiganensis (Cmm), the causal agent of tomato bacterial canker, are worldwide distributed, but the occurrence of the latter is usually erratic. In order to evaluate the risk of seed transmission and the relationship between seed contamination and disease outbreak, an extensive field trial has been put in place in 2013 for each pathosystem. Three artificially contamination levels were considered, composed of 100 seedlings each. Disease outbreaks were weekly monitored during the growing season until harvesting and disease was quantified by means of AUDPC. Seeds were produced from each plot and analysed in order to assess their contamination level. Preliminary results of our studies showed that disease quantity caused by Xv, Cmm or Xe was directly correlated to the percentage of initial infection, according to AUDPC values obtained. Contamination rate of seed produced in diseased fields was not always correlated with disease quantity observed. A microbial consortium, a bacterial antagonist and a plant polyphenol were assayed to assess their potential efficacy in seed disinfection: naturally contaminated tomato and pepper seeds were treated and sown. Pepper and tomato seedlings were inspected and analysed for the presence of bacterial spot. Preliminary results obtained show that none of the above mentioned treatments was able to eradicate the pathogen from seeds

    Swiss digital pathology recommendations: results from a Delphi process conducted by the Swiss Digital Pathology Consortium of the Swiss Society of Pathology

    Get PDF
    Integration of digital pathology (DP) into clinical diagnostic workflows is increasingly receiving attention as new hardware and software become available. To facilitate the adoption of DP, the Swiss Digital Pathology Consortium (SDiPath) organized a Delphi process to produce a series of recommendations for DP integration within Swiss clinical environments. This process saw the creation of 4 working groups, focusing on the various components of a DP system (1) scanners, quality assurance and validation of scans, (2) integration of Whole Slide Image (WSI)-scanners and DP systems into the Pathology Laboratory Information System, (3) digital workflow-compliance with general quality guidelines, and (4) image analysis (IA)/artificial intelligence (AI), with topic experts for each recruited for discussion and statement generation. The work product of the Delphi process is 83 consensus statements presented here, forming the basis for "SDiPath Recommendations for Digital Pathology". They represent an up-to-date resource for national and international hospitals, researchers, device manufacturers, algorithm developers, and all supporting fields, with the intent of providing expectations and best practices to help ensure safe and efficient DP usage

    Swiss digital pathology recommendations : results from a Delphi process conducted by the Swiss Digital Pathology Consortium of the Swiss Society of Pathology

    Get PDF
    Integration of digital pathology (DP) into clinical diagnostic workflows is increasingly receiving attention as new hardware and software become available. To facilitate the adoption of DP, the Swiss Digital Pathology Consortium (SDiPath) organized a Delphi process to produce a series of recommendations for DP integration within Swiss clinical environments. This process saw the creation of 4 working groups, focusing on the various components of a DP system (1) scanners, quality assurance and validation of scans, (2) integration of Whole Slide Image (WSI)-scanners and DP systems into the Pathology Laboratory Information System, (3) digital workflow-compliance with general quality guidelines, and (4) image analysis (IA)/artificial intelligence (AI), with topic experts for each recruited for discussion and statement generation. The work product of the Delphi process is 83 consensus statements presented here, forming the basis for "SDiPath Recommendations for Digital Pathology". They represent an up-to-date resource for national and international hospitals, researchers, device manufacturers, algorithm developers, and all supporting fields, with the intent of providing expectations and best practices to help ensure safe and efficient DP usage
    corecore