12 research outputs found

    Uso de metales de transici贸n en ensayos combinatorios metal-antibi贸tico para la resensibilizaci贸n de bacterias resistentes

    Get PDF
    Desde que comenz贸 la producci贸n en masa de los antibi贸ticos se logr贸 combatir de mejor manera las infecciones bacterianas, pero con este desarrollo tecnol贸gico creci贸 tambi茅n la probabilidad de la aparici贸n de cepas resistentes a estos f谩rmacos. Recientemente se ha investigado m谩s en esta 谩rea debido a que cada vez son m谩s las zonas geogr谩ficas afectadas, as铆 como la variedad de los microorganismos resistentes. Una de las estrategias para combatir este problema es reintroducir los antibi贸ticos que previa y actualmente se encuentran en uso al combinarlos con agentes sensibilizantes, los cuales permitir铆an vencer la resistencia a antibi贸ticos. En el presente trabajo se utilizan combinaciones de metales de transici贸n con antibi贸ticos, siendo estos metales Cu(II), Cd(II), Co(II), Ni(II) y Zn(II), para estudiar si son capaces de sensibilizar a cultivos de Escherichia coli o Staphylococcus aureus a los antibi贸ticos utilizados, y posteriormente probar si poseen la capacidad para resensibilizar cepas de estos microorganismos resistente a un antibi贸tico espec铆fico. Mediante la determinaci贸n de concentraciones m铆nimas inhibitorias se seleccionaron las concentraciones a probar, y se realizaron combinaciones metalantibi贸tico siguiendo la metodolog铆a checkerboard. Se realizaron pruebas de inhibici贸n en una cepa de Escherichia coli ATCC 11229, observando que es posible utilizar Cu(II), Co(II), Cd(II) y Ni(II) para inhibir esta cepa en combinaci贸n con ampicilina, mientras que Cu(II), Zn(II), Co(II) y Cd(II) se pueden utilizar para causar este efecto con kanamicina. Siguiendo la misma metodolog铆a con la cepa de Staphylococcus aureus ATCC 6538 se observ贸 que es posible utilizar Ni(II) para inhibir el cultivo en combinaci贸n con los antibi贸ticos 尾-lact谩micos ampicilina y meticilina, mientras que Cu(II), Zn(II), Co(II) y Cd(II) son capaces de inhibir el crecimiento de la cepa al combinarse con kanamicina. Utilizando los pl谩smidos pUC57 y pGEX4T2 se transformaron las cepas para conferirles resistencia a los antibi贸ticos utilizados, someti茅ndolas a las mismas pruebas que aquellas sensibles. En E. coli se observ贸 que Cu(II), Cd(II) y Ni(II) poseen la capacidad de re-sensibilizar a la cepa resistente a ampicilina, mientras que Cu(II) Zn(II) y Cd(II) son capaces de causar este efecto la cepa resistente a kanamicina. Cu(II), Zn(II) y Cd(II) lograron re-sensibilizar S. aureus resistente a kanamicina, mientras que no se logr贸 una re-sensibilizaci贸n en las cepas resistentes a los antibi贸ticos 尾-lact谩micos utilizados. Una b煤squeda bibliogr谩fica nos encamin贸 a plantear la utilizaci贸n de combinaciones metal-antibi贸tico aqu铆 presentadas en materiales de uso t贸pico como posible aplicaci贸n terap茅utica como estrategia para combatir las problem谩ticas de infecciones bacterianas resistentes y no resistentes, debido a que las concentraciones que se utilizan en el presente trabajo se encuentran por debajo de las reportadas como da帽inas por esta v铆a. Por 煤ltimo se puede concluir que utilizar los metales de transici贸n Cu(II), Zn(II), Co(II), Cd(II) y Ni(II) para sensibilizar bacterias a antibi贸ticos, as铆 como para disminuir la capacidad de crecimiento de las bacterias resistentes a los mismos presenta ser un 谩rea de oportunidad para combatir la problem谩tica relacionada con las enfermedades infecciosas persistentes por este tipo de bacterias

    Uso del exopolisac谩rido de Rhodotorula mucilaginosa UANL-001L como agente estabilizador en la s铆ntesis de nanopart铆culas met谩licas para la obtenci贸n de compuestos h铆bridos con actividad antimicrobiana y antibiofilm

    Get PDF
    El consumo global de los antibi贸ticos ha causado que los microorganismos est茅n sometidos bajo un estr茅s selectivo que los obliga a adaptarse a estas nuevas condiciones de vida que contienen altas concentraciones de antibi贸ticos, por lo cual emergen cepas bacterianas con variedad de resistencias a diferentes familias de estos f谩rmacos. Recientemente se ha estudiado el uso de nanopart铆culas met谩licas en esta 谩rea, ya que poseen efecto antimicrobiano, tanto contra cepas silvestres como resistentes, que las convierten en candidatos potenciales para su uso como agentes terap茅uticos; adicionalmente los exopolisac谩ridos microbianos se han utilizado en la s铆ntesis de nanopart铆culas para mejorar su biocompatibilidad, reduciendo as铆 el riesgo de utilizarlos en una variedad de aplicaciones. En el presente trabajo se realiz贸 la s铆ntesis de nanopart铆culas met谩licas, de Cu, Ni y Zn, utilizando el exopolisac谩rido de la levadura Rhodotorula mucilaginosa UANL-001L, una cepa aislada en la regi贸n noreste del estado, como agente estabilizante, as铆 como 谩cido asc贸rbico como agente reductor, con el fin de obtener comp贸sitos antimicrobianos que posean la capacidad de inhibir el crecimiento y la producci贸n de biofilm de dos cepas cl铆nicas resistentes a antibi贸ticos aisladas de pacientes internados en un hospital del municipio de Monterrey. Estableciendo un dise帽o de experimentos 33, que inclu铆a 3 concentraciones a probar de cada componente (sal met谩lica, exopolisac谩rido y 谩cido asc贸rbico) se logr贸 sintetizar nanopart铆culas estables de NiO y ZnO, se caracterizaron mediante diferentes t茅cnicas observando los plasmones de resonancia de superficie caracter铆sticos para estos metales, mediante espectrofotometr铆a infrarroja se observ贸 que las nanopart铆culas se encuentran en la red polim茅rica del exopolisac谩rido utilizado, mediante microscop铆a electr贸nica se determin贸 un tama帽o de part铆cula de 26 y 8 nm para las nanopart铆culas de Ni y Zn, respectivamente, sintetizadas en la matriz del EPS. Dos cepas bacterianas resistentes a antibi贸ticos, S. aureus y P. aeruginosa, fueron utilizadas para conocer la actividad antimicrobiana de los comp贸sitos obtenidos. Utilizando el comp贸sito que contiene nanopart铆culas de NiO se logr贸 inhibir tanto el crecimiento como la producci贸n de biofilm de la cepa grampositiva a una concentraci贸n de 3 mg/mL, as铆 como a la cepa gramnegativa a una concentraci贸n de 2 mg/mL. Mientras que el comp贸sito que contiene las nanopart铆culas de ZnO solo logr贸 inhibir el crecimiento de la cepa grampositiva a una concentraci贸n de 1 mg/mL, siendo incapaz de inhibir el crecimiento de la cepa gramnegativa ni la producci贸n de biofilm de ambas cepas. El comp贸sito que contiene las nanopart铆culas de NiO fue utilizado en combinaci贸n con diferentes antibi贸ticos con el fin de conocer si es capaz de potenciar el efecto de los mismos. Utilizando combinaciones de concentraciones menores a la inhibitoria se observ贸 que este comp贸sito es capaz de potenciar el efecto inhibitorio de los antibi贸ticos ampicilina, kanamicina y cloranfenicol contra la cepa grampositiva, as铆 como el efecto inhibitorio de kanamicina, cloranfenicol y ciprofloxacino contra la cepa gramnegativa. De manera similar se utilizaron combinaciones del comp贸sito y antibi贸ticos para conocer si es capaz de inhibir la producci贸n de biofilm, observando que este efecto inhibitorio es nulo. Con el fin de conocer la posibilidad de utilizar los comp贸sitos para tratamiento de infecciones se determin贸 la toxicidad in vivo, v铆a oral, de ambos comp贸sitos, as铆 como del exopolisac谩rido sin modificar. Se encontr贸 que los tres compuestos a una concentraci贸n mayor a las inhibitorias encontradas no posee efecto t贸xico, evidenciado por la falta de diferencia significativa en los valores de par谩metro renales determinados. En base a los resultados obtenidos se puede concluir que el comp贸sito de exopolisac谩rido que contiene nanopart铆culas de NiO es un buen candidato para utilizarse como agente antimicrobiano en el tratamiento de infecciones causadas por Staphylococcus aureus y Pseudomonas aeruginosa al poseer la capacidad de inhibir tanto el crecimiento como la producci贸n de biofilm, as铆 como no presentar toxicidad v铆a oral en ratas Wistar

    Synthesis and characterization of calcium hydroxide obtained from agave bagasse and investigation of its antibacterial activity

    Get PDF
    ABSTRACT Calcium hydroxide (Ca(OH)2) is recognized as an efficient bactericide and is widely applied as a root canal filler in endodontic treatment. Ca(OH)2 is mainly produced by hydration of calcium oxide (CaO), a product of the thermal decomposition of calcium carbonate (CaCO3) from sources such as limestone. In this work, calcium hydroxide particles were synthetized by the thermochemical transformation of waste biomass from the tequila industry. Agave biomass processed at 600 掳C was composed mostly of calcium carbonate (CaCO3), while calcination at 900 掳C followed by hydration produced Ca(OH)2. The morphology and crystalline nature of the Ca(OH)2 particles were characterized by micro-Raman spectroscopy, scanning electron microscopy and X-ray diffraction analysis. Bactericidal activity of synthesized calcium hydroxide was evaluated with the agar diffusion assay. Our results provide evidence that Ca(OH)2 obtained from agave biomass is an effective bactericidal against Escherichia coli and Enterococcus faecalis. Biomass from agave is available in Mexico and the rest of the American continent, the use of processed bagasse for medical applications could provide a venue for the useful disposition of industrial waste. Palabras clave: recursos renovables, ceniza, bactericida, Ca(OH)2 RESUMEN El hidr贸xido de calcio (Ca(OH)2) es reconocido como un eficiente bactericida y es ampliamente utilizado como relleno de la ra铆z dental en tratamientos de endodoncia. El Ca(OH)2 es producido por la hidrataci贸n del 贸xido de calcio (CaO), un producto de la descomposici贸n t茅rmica del carbonato de calcio (CaCO3), obtenido principalmente de piedra caliza. En el presente trabajo, se sintetizaron part铆culas de hidr贸xido de calcio mediante la descomposici贸n t茅rmica de biomasa residual de la industria tequilera. La biomasa de agave se proces贸 a 600 掳C, la cual se compone principalmente de carbonato de calcio (CaCO3), por lo que su calcinaci贸n a 900 掳C y posterior hidrataci贸n producen el Ca(OH)2. La morfolog铆a y cristalinidad de las part铆culas de Ca(OH)2 se caracterizaron mediante el uso de espectroscop铆a Raman, microscopio electr贸nico de barrido y difracci贸n de rayos X. La actividad bactericida del hidr贸xido de calcio obtenido, se evalu贸 mediante el ensayo de difusi贸n en agar. Los resultados proveen evidencia de la efectividad del Ca(OH)2, obtenido de la biomasa de agave, contra Escherichia coli y Enterococcus faecalis. La biomasa de agave se encuentra ampliamente disponible en M茅xico y el resto del continente americano, por lo que el uso de bagazo de agave procesado en aplicaciones m茅dicas, puede proveer una alternativa en la disposici贸n y el uso de residuos agroindustriales

    Synthetic Biology Tools for Engineering Microbial Cells to Fight Superbugs

    Get PDF
    With the increase in clinical cases of bacterial infections with multiple antibiotic resistance, the world has entered a health crisis. Overuse, inappropriate prescribing, and lack of innovation of antibiotics have contributed to the surge of microorganisms that can overcome traditional antimicrobial treatments. In 2017, the World Health Organization published a list of pathogenic bacteria, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli (ESKAPE). These bacteria can adapt to multiple antibiotics and transfer their resistance to other organisms; therefore, studies to find new therapeutic strategies are needed. One of these strategies is synthetic biology geared toward developing new antimicrobial therapies. Synthetic biology is founded on a solid and well-established theoretical framework that provides tools for conceptualizing, designing, and constructing synthetic biological systems. Recent developments in synthetic biology provide tools for engineering synthetic control systems in microbial cells. Applying protein engineering, DNA synthesis, and in silico design allows building metabolic pathways and biological circuits to control cellular behavior. Thus, synthetic biology advances have permitted the construction of communication systems between microorganisms where exogenous molecules can control specific population behaviors, induce intracellular signaling, and establish co-dependent networks of microorganisms

    Synergistic Antimicrobial Effects of Silver/Transition-metal Combinatorial Treatments

    Get PDF
    Due to the emergence of multi-drug resistant strains, development of novel antibiotics has become a critical issue. One promising approach is the use of transition metals, since they exhibit rapid and significant toxicity, at low concentrations, in prokaryotic cells. Nevertheless, one main drawback of transition metals is their toxicity in eukaryotic cells. Here, we show that the barriers to use them as therapeutic agents could be mitigated by combining them with silver. We demonstrate that synergism of combinatorial treatments (Silver/transition metals, including Zn, Co, Cd, Ni, and Cu) increases up to 8-fold their antimicrobial effect, when compared to their individual effects, against E. coli and B. subtilis. We find that most combinatorial treatments exhibit synergistic antimicrobial effects at low/ non-toxic concentrations to human keratinocyte cells, blast and melanoma rat cell lines. Moreover, we show that silver/(Cu, Ni, and Zn) increase prokaryotic cell permeability at sub-inhibitory concentrations, demonstrating this to be a possible mechanism of the synergistic behavior. Together, these results suggest that these combinatorial treatments will play an important role in the future development of antimicrobial agents and treatments against infections. In specific, the cytotoxicity experiments show that the combinations have great potential in the treatment of topical infections

    In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent

    Get PDF
    Introduction: One of the main issues in the medical field and clinical practice is the development of novel and effective treatments against infections caused by antibiotic-resistant bacteria. One avenue that has been approached to develop effective antimicrobials is the use of silver nanoparticles (Ag-NPs), since they have been found to exhibit an efficient and wide spectrum of antimicrobial properties. Among the main drawbacks of using Ag-NPs are their potential cytotoxicity against eukaryotic cells and the latent environmental toxicity of their synthesis methods. Therefore, diverse green synthesis methods, which involve the use of environmentally friendly plant extracts as reductive and capping agents, have become attractive to synthesize Ag-NPs that exhibit antimicrobial effects against resistant bacteria at concentrations below toxicity thresholds for eukaryotic cells. Purpose: In this study, we report a green one-pot synthesis method that uses Acacia rigidula extract as a reducing and capping agent, to produce Ag-NPs with applications as therapeutic agents to treat infections in vivo. Materials and methods: The Ag-NPs were characterized using transmission electron microscopy (TEM), high-resolution TEM, selected area electron diffraction, energy-dispersive spectroscopy, ultraviolet鈥搗isible, and Fourier transform infrared. Results: We show that Ag-NPs are spherical with a narrow size distribution. The Ag-NPs show antimicrobial activities in vitro against Gram-negative (Escherichia coli, Pseudomonas aeruginosa, and a clinical multidrug-resistant strain of P. aeruginosa) and Gram-positive (Bacillus subtilis) bacteria. Moreover, antimicrobial effects of the Ag-NPs, against a resistant P. aeruginosa clinical strain, were tested in a murine skin infection model. The results demonstrate that the Ag-NPs reported in this work are capable of eradicating pathogenic resistant bacteria in an infection in vivo. In addition, skin, liver, and kidney damage profiles were monitored in the murine infection model, and the results demonstrate that Ag-NPs can be used safely as therapeutic agents in animal models. Conclusion: Together, these results suggest the potential use of Ag-NPs, synthesized by green chemistry methods, as therapeutic agents against infections caused by resistant and nonresistant strains. Keywords: silver nanoparticles, green synthesis, in vitro antibacterial activity, in vivo antibacterial activity, skin infection, toxicological stud

    Antimicrobial and antibiofilm activity of biopolymer-Ni, Zn nanoparticle biocomposites synthesized using R. mucilaginosa UANL-001L exopolysaccharide as a capping agent

    Get PDF
    Introduction: Global increase in the consumption of antibiotics has induced selective stress on wild-type microorganisms, pushing them to adapt to conditions of higher antibiotic concentrations, and thus an increased variety of resistant bacterial strains have emerged. Metal nanoparticles synthesized by green methods have been studied and proposed as potential antimicrobial agents against both wild-type and antibiotic-resistant strains; in addition, exopolysaccharides have been used as capping agent of metal nanoparticles due to their biocompatibility, reducing biological risks in a wide variety of applications.Purpose: In this work, we use an exopolysaccharide, from Rhodotorula mucilaginosa UANL-001L, an autochthonous strain from the Mexican northeast, as a capping agent in the synthesis of Zn, and Ni, nanoparticle biopolymer biocomposites.Materials and methods: To physically and chemically characterize the synthesized biocomposites, FT-IR, UV-Vs, TEM, SAED and EDS analysis were carried out. Antimicrobial and antibiofilm biological activity were tested for the biocomposites against two resistant clinical strains, a Gram-positive Staphylococcus aureus, and a Gram-negative Pseudomonas aeruginosa. Antimicrobial activity was determined using a microdilution assay whereas antibiofilm activity was analyzed through crystal violet staining.Results: Biocomposites composed of exopolysaccharide capped Zn and Ni metal nanoparticles were synthesized through a green synthesis methodology. The average size of the Zn and Ni nanoparticles ranged between 8 and 26 nm, respectively. The Ni-EPS biocomposites showed antimicrobial and antibiofilm activity against resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa at 3 and 2 mg/mL, respectively. Moreover, Zn-EPS biocomposites showed antimicrobial activity against resistant Staphylococcus aureus at 1 mg/mL. Both biocomposites showed no toxicity, as renal function showed no differences between treatments and control in the in vivo assays with male rats tests in this study at a concentration of 24 mg/kg of body weight. Conclusion: The exopolysaccharide produced by Rhodotorula mucilaginosa UANL-001L is an excellent candidate as a capping agent in the synthesis of biopolymer-metal nanoparticle biocomposites. Both Ni and Zn-EPS biocomposites demonstrate to be potential contenders as novel antimicrobial agents against both Gram-negative and Gram-positive clinically relevant resistant bacterial strains. Moreover, Ni-EPS biocomposites also showed antibiofilm activity, which makes them an interesting material to be used in different applications to counterattack global health problems due to the emergence of resistant microorganisms

    Re-sensitizing Ampicillin and Kanamycin-Resistant E. coli and S. aureus Using Synergistic Metal Micronutrients-Antibiotic Combinations

    Get PDF
    Due to the recent emergence of multi-drug resistant strains, the development of novel antimicrobial agents has become a critical issue. The use of micronutrient transition metals is a promising approach to overcome this problem since these compounds exhibit significant toxicity at low concentrations in prokaryotic cells. In this work, we demonstrate that at concentrations lower than their minimal inhibitory concentrations and in combination with different antibiotics, it is possible to mitigate the barriers to employ metallic micronutrients as therapeutic agents. Here, we show that when administered as a combinatorial treatment, Cu2+, Zn2+, Co2+, Cd2+, and Ni2+ increase susceptibility of Escherichia coli and Staphylococcus aureus to ampicillin and kanamycin. Furthermore, ampicillin-resistant E. coli is re-sensitized to ampicillin when the ampicillin is administered in combination with Cu2+, Cd2+, or Ni2. Similarly, Cu2+, Zn2+, or Cd2+ re-sensitize kanamycin-resistant E. coli and S. aureus to kanamycin when administered in a combinatorial treatment with those transition metals. Here, we demonstrate that for both susceptible and resistant bacteria, transition-metal micronutrients, and antibiotics interact synergistically in combinatorial treatments and exhibit increased effects when compared to the treatment with the antibiotic alone. Moreover, in vitro and in vivo assays, using a murine topical infection model, showed no toxicological effects of either treatment at the administered concentrations. Lastly, we show that combinatorial treatments can clear a murine topical infection caused by an antibiotic-resistant strain. Altogether, these results suggest that antibiotic-metallic micronutrient combinatorial treatments will play an important role in future developments of antimicrobial agents and treatments against infections caused by both susceptible and resistant strains
    corecore