32 research outputs found

    Ao38, a new cell line from eggs of the black witch moth, Ascalapha odorata (Lepidoptera: Noctuidae), is permissive for AcMNPV infection and produces high levels of recombinant proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The insect cell line is a critical component in the production of recombinant proteins in the baculovirus expression system and new cell lines hold the promise of increasing both quantity and quality of protein production.</p> <p>Results</p> <p>Seventy cell lines were established by single-cell cloning from a primary culture of cells derived from eggs of the black witch moth (<it>Ascalapha odorata</it>; Lepidoptera, Noctuidae). Among 8 rapidly growing lines, cell line 38 (Ao38) was selected for further analysis, based on susceptibility to AcMNPV infection and production of secreted alkaline phosphatase (SEAP) from a baculovirus expression vector. In comparisons with low-passage High Five (BTI-Tn-5B1-4) cells, infected Ao38 cells produced β-galactosidase and SEAP at levels higher (153% and 150%, respectively) than those measured from High Five cells. Analysis of N-glycans of SEAP produced in Ao38 cells revealed two N-glycosylation sites and glycosylation patterns similar to those reported for High Five and Sf9 cells. Glycopeptide isoforms consisted of pauci- or oligomannose, with and without fucose on N-acetylglucosamine(s) linked to asparagine residues. Estimates of Ao38 cell volume suggest that Ao38 cells are approximately 2.5× larger than Sf9 cells but only approximately 74% of the size of High Five cells. Ao38 cells were highly susceptible to AcMNPV infection, similar to infectivity of Sf9 cells. Production of infectious AcMNPV budded virions from Ao38 cells peaked at approximately 4.5 × 10<sup>7 </sup>IU/ml, exceeding that from High Five cells while lower than that from Sf9 cells. Ao38 cells grew rapidly in stationary culture with a population doubling time of 20.2 hr, and Ao38 cells were readily adapted to serum-free medium (Sf-900III) and to a suspension culture system. Analysis of Ao38 and a parental <it>Ascalapha odorata </it>cell line indicated that these lines were free of the alphanodavirus that was recently identified as an adventitious agent in High Five cell lines.</p> <p>Conclusions</p> <p>Ao38 cells represent a highly productive new insect cell line that will be useful for heterologous protein expression and other applications in biotechnology.</p

    Analysis of an Autographa californica Multicapsid Nucleopolyhedrovirus lef-6-Null Virus: LEF-6 Is Not Essential for Viral Replication but Appears To Accelerate Late Gene Transcription

    No full text
    The Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) lef-6 gene was previously shown to be necessary for optimal transcription from an AcMNPV late promoter in transient late expression assays. In the present study, we examined the expression and cellular localization of lef-6 during the AcMNPV infection cycle and generated a lef-6-null virus for studies of the role of lef-6 in the infection cycle. Transcription of lef-6 was detected from 4 to 48 h postinfection, and the LEF-6 protein was identified in dense regions of infected cell nuclei, a finding consistent with its potential role as a late transcription factor. To examine lef-6 in the context of the AcMNPV infection cycle, we deleted the lef-6 gene from an AcMNPV genome propagated as an infectious BACmid in Escherichia coli. Unexpectedly, the resulting AcMNPV lef-6-null BACmid (vAc(lef6KO)) was able to propagate in cell culture, although virus yields were substantially reduced. Thus, the lef-6 gene is not essential for viral replication in Sf9 cells. Two “repair” AcMNPV BACmids (vAc(lef6KO-REP-P) and vAc(lef6KO-REP-ie1P)) were generated by transposition of the lef-6 gene into the polyhedrin locus of the vAc(lef6KO) BACmid. Virus yields from the two repair viruses were similar to those from wild-type AcMNPV or a control (BACmid-derived) virus. The lef-6-null BACmid (vAc(lef6KO)) was further examined to determine whether the deletion of lef-6 affected DNA replication or late gene transcription in the context of an infection. The lef-6 deletion did not appear to affect viral DNA replication. Using Northern blot analysis, we found that although early transcription was apparently unaffected, both late and very late transcription were delayed in cells infected with the lef-6-null BACmid. This phenotype was rescued in viruses containing the lef-6 gene reinserted into the polyhedrin locus. Thus, the lef-6 gene was not essential for either viral DNA replication or late gene transcription, but the absence of lef-6 resulted in a substantial delay in the onset of late transcription. Therefore, lef-6 appears to accelerate the infection cycle of AcMNPV

    A Cellular Drosophila melanogaster Protein with Similarity to Baculovirus F Envelope Fusion Proteins

    No full text
    Baculovirus F (fusion) proteins are found in the envelopes of budded virions. Recently a Drosophila melanogaster gene (CG4715) that encodes a protein with sequence similarity to baculovirus F proteins was discovered. To examine similarities and differences with baculovirus F proteins, we cloned the D. melanogaster cellular F (Dm-cF) protein gene and analyzed Dm-cF expression and localization. The predicted Dm-cF protein sequence lacks a furin cleavage site, and transiently expressed Dm-cF showed no protein cleavage and no detectable membrane fusion activity. In cell localization studies, transiently expressed Dm-cF was localized to intracellular organelles in D. melanogaster S2 cells, unlike baculovirus F proteins, which localize to cellular plasma membranes. Using reverse transcriptase PCR and Western blot analysis to examine Dm-cF expression in animals, we detected Dm-cF expression in both larval and adult D. melanogaster cells. However, Dm-cF expression was detected only in third instar larvae and adults, suggesting that Dm-cF expression may be developmentally regulated. We also identified genes related to Dm-cF in the genomes of two other Drosophila species, Drosophila yakuba and Drosophila pseudoobscura, and the mosquito Anopheles gambiae. These observations suggest that f genes may be present in the genomes of many insects. Conservation within and between 22 baculovirus and 4 insect F proteins was examined in detail. These studies demonstrate that Dm-cF is expressed in D. melanogaster and suggest that if baculovirus f genes are derived from a host cellular f gene, the function appears to have changed substantially upon adaptation to the baculovirus infection cycle

    Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta

    No full text
    Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10&nbsp;g in the larval stage. M.&nbsp;sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M.&nbsp;sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4&nbsp;Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects

    Display of Heterologous Proteins on gp64null Baculovirus Virions and Enhanced Budding Mediated by a Vesicular Stomatitis Virus G-Stem Constructâ–ż

    No full text
    The Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) GP64 envelope glycoprotein is essential for virus entry and plays an important role in virion budding. An AcMNPV construct that contains a deletion of the gp64 gene is unable to propagate infection from cell to cell, and this defect results from both a severe reduction in the production of budded virions and the absence of GP64 on virions. In the current study, we examined GP64 proteins containing N- and C-terminal truncations of the ectodomain and identified a minimal construct capable of targeting the truncated GP64 to budded virions. The minimal budding and targeting construct of GP64 contained 38 amino acids from the mature N terminus of the GP64 ectodomain and 52 amino acids from the C terminus of GP64. Because the vesicular stomatitis virus (VSV) G protein was previously found to rescue infectivity of a gp64null AcMNPV, we also examined a small C-terminal construct of the VSV G protein. We found that a construct containing 91 amino acids from the C terminus of VSV G (termed G-stem) was capable of rescuing AcMNPV gp64null virion budding to wild-type (wt) or nearly wt levels. We also examined the display of chimeric proteins on the gp64null AcMNPV virion. By generating viruses that expressed chimeric influenza virus hemagglutinin (HA) proteins containing the GP64 targeting domain and coinfecting those viruses with a virus expressing the G-stem construct, we demonstrated enhanced display of the HA protein on gp64null AcMNPV budded virions. The combined use of gp64null virions, VSV G-stem-enhanced budding, and GP64 domains for targeting heterologous proteins to virions should be valuable for biotechnological applications ranging from targeted transduction of mammalian cells to vaccine production

    The Autographa californica Multicapsid Nucleopolyhedrovirus GP64 Protein: Analysis of Transmembrane Domain Length and Sequence Requirementsâ–ż

    No full text
    GP64, the major envelope glycoprotein of the Autographa californica multicapsid nucleopolyhedrovirus budded virion, is important for host cell receptor binding and mediates low-pH-triggered membrane fusion during entry by endocytosis. Previous transmembrane (TM) domain replacement studies showed that the TM domain serves a critical role in GP64 function. To extend the prior studies and examine specific sequence requirements of the TM domain, we generated a variety of GP64 TM domain mutations. The mutations included 4- to 8-amino-acid deletions, as well as single and multiple point mutations. While most TM domain deletion constructs remained fusion competent, those containing deletions of eight amino acids from the C terminus did not mediate detectable fusion. The addition of a hydrophobic amino acid (A, L, or V) to the C terminus of construct C8 (a construct that contains a TM domain deletion of eight amino acids from the C terminus) restored fusion activity. These data suggest that the membrane fusion function of GP64 is dependent on a critical length of the hydrophobic TM domain. All GP64 proteins with a truncated TM domain mediated detectable virion budding with dramatically lower levels of efficiency than wild-type GP64. The effects of deletions of various lengths and positions in the TM domain were also examined for their effects on viral infectivity. Further analysis of the TM domain by single amino acid substitutions and 3-alanine scanning mutations identified important but not essential amino acid positions. These studies showed that amino acids at positions 485 to 487 and 503 to 505 are important for cell surface expression of GP64, while amino acids at positions 483 to 484 and 494 to 496 are important for virus budding. Overall, our results show that specific features and amino acid sequences, particularly the length of the hydrophobic TM domain, play critical roles in membrane anchoring, membrane fusion, virus budding, and infectivity

    The Pre-Transmembrane Domain of the Autographa californica Multicapsid Nucleopolyhedrovirus GP64 Protein Is Critical for Membrane Fusion and Virus Infectivity▿ †

    No full text
    The envelope glycoprotein, GP64, of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) is a class III viral fusion protein that mediates pH-triggered membrane fusion during virus entry. Viral fusion glycoproteins from many viruses contain a short region in the ectodomain and near the transmembrane domain, referred to as the pre-transmembrane (PTM) domain. In some cases, the PTM domain is rich in aromatic amino acids and plays an important role in membrane fusion. Although the 23-amino-acid (aa) PTM domain of AcMNPV GP64 lacks aromatic amino acids, we asked whether this region might also play a significant role in membrane fusion. We generated alanine scanning and single and multiple amino acid substitutions in the GP64 PTM domain. We specifically focused on amino acid positions conserved between baculovirus GP64 and thogotovirus GP75 proteins, as well as hydrophobic and charged amino acids. For each PTM-modified construct, we examined trimerization, cell surface localization, and membrane fusion activity. Membrane merger and pore formation were also examined. We identified eight aa positions that are important for membrane fusion activity. Critical positions were not clustered in the linear sequence but were distributed throughout the PTM domain. While charged residues were not critical or essential, three hydrophobic amino acids (L465, L476, and L480) played an important role in membrane fusion activity and appear to be involved in formation of the fusion pore. We also asked whether selected GP64 constructs were capable of rescuing a gp64null AcMNPV virus. These studies suggested that several conserved residues (T463, G460, G462, and G474) were not required for membrane fusion but were important for budding and viral infectivity
    corecore