7 research outputs found

    Selenium Ecotoxicology in Freshwater Lakes Receiving Coal Combustion Residual Effluents: A North Carolina Example

    No full text
    Anthropogenic activities resulting in releases of selenium-laden waste streams threaten freshwater ecosystems. Lake ecosystems demand special consideration because they are characterized by prolonged retention of selenium and continuous cycling of the element through the food chain, through which it becomes available to toxicologically susceptible egg-laying vertebrates. This study documents the current selenium burden of lakes in North Carolina (NC) with historic selenium inputs from nearby coal-fired power plants. We measured selenium concentrations in surface waters, sediment pore waters, and resident fish species from coal combustion residual (CCR)-impacted lakes and paired reference lakes. The data are related to levels of recent selenium inputs and analyzed in the context of recently updated federal criteria for the protection of aquatic life. We show that the Se content of fish from lakes with the highest selenium inputs regularly exceed these criteria and are comparable to those measured during historic fish extirpation events in the United States. Large legacy depositions of CCRs within reservoir sediments are likely to sustain Se toxicity for many years despite recent laws to limit CCR discharge into surface waters in NC. Importantly, the widespread use of high-selenium coals for electricity generation extends the potential risk for aquatic ecosystem impacts beyond U.S. borders

    Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes

    No full text
    Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg<sup>–1</sup> and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg<sup>–1</sup>, respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34–38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash

    Boron and Strontium Isotopic Characterization of Coal Combustion Residuals: Validation of New Environmental Tracers

    No full text
    In the U.S., coal fired power plants produce over 136 million tons of coal combustion residuals (CCRs) annually. CCRs are enriched in toxic elements, and their leachates can have significant impacts on water quality. Here we report the boron and strontium isotopic ratios of leaching experiments on CCRs from a variety of coal sources (Appalachian, Illinois, and Powder River Basins). CCR leachates had a mostly negative δ<sup>11</sup>B, ranging from −17.6 to +6.3‰, and <sup>87</sup>Sr/<sup>86</sup>Sr ranging from 0.70975 to 0.71251. Additionally, we utilized these isotopic ratios for tracing CCR contaminants in different environments: (1) the 2008 Tennessee Valley Authority (TVA) coal ash spill affected waters; (2) CCR effluents from power plants in Tennessee and North Carolina; (3) lakes and rivers affected by CCR effluents in North Carolina; and (4) porewater extracted from sediments in lakes affected by CCRs. The boron isotopes measured in these environments had a distinctive negative δ<sup>11</sup>B signature relative to background waters. In contrast <sup>87</sup>Sr/<sup>86</sup>Sr ratios in CCRs were not always exclusively different from background, limiting their use as a CCR tracer. This investigation demonstrates the validity of the combined geochemical and isotopic approach as a unique and practical identification method for delineating and evaluating the environmental impact of CCRs

    Iodide, Bromide, and Ammonium in Hydraulic Fracturing and Oil and Gas Wastewaters: Environmental Implications

    No full text
    The expansion of unconventional shale gas and hydraulic fracturing has increased the volume of the oil and gas wastewater (OGW) generated in the U.S. Here we demonstrate that OGW from Marcellus and Fayetteville hydraulic fracturing flowback fluids and Appalachian conventional produced waters is characterized by high chloride, bromide, iodide (up to 56 mg/L), and ammonium (up to 420 mg/L). Br/Cl ratios were consistent for all Appalachian brines, which reflect an origin from a common parent brine, while the I/Cl and NH<sub>4</sub>/Cl ratios varied among brines from different geological formations, reflecting geogenic processes. There were no differences in halides and ammonium concentrations between OGW originating from hydraulic fracturing and conventional oil and gas operations. Analysis of discharged effluents from three brine treatment sites in Pennsylvania and a spill site in West Virginia show elevated levels of halides (iodide up to 28 mg/L) and ammonium (12 to 106 mg/L) that mimic the composition of OGW and mix conservatively in downstream surface waters. Bromide, iodide, and ammonium in surface waters can impact stream ecosystems and promote the formation of toxic brominated-, iodinated-, and nitrogen disinfection byproducts during chlorination at downstream drinking water treatment plants. Our findings indicate that discharge and accidental spills of OGW to waterways pose risks to both human health and the environment

    The Impact of Coal Combustion Residue Effluent on Water Resources: A North Carolina Example

    No full text
    The combustion of coal to generate electricity produces about 130 million tons of coal combustion residues (CCRs) each year in the United States; yet their environmental implications are not well constrained. This study systematically documents the quality of effluents discharged from CCR settling ponds or cooling water at ten sites and the impact on associated waterways in North Carolina, compared to a reference lake. We measured the concentrations of major and trace elements in over 300 samples from CCR effluents, surface water from lakes and rivers at different downstream and upstream points, and pore water extracted from lake sediments. The data show that CCR effluents contain high levels of contaminants that in several cases exceed the U.S. EPA guidelines for drinking water and ecological effects. This investigation demonstrates the quality of receiving waters in North Carolina depends on (1) the ratio between effluent flux and freshwater resource volumes and (2) recycling of trace elements through adsorption on suspended particles and release to deep surface water or pore water in bottom sediments during periods of thermal water stratification and anoxic conditions. The impact of CCRs is long-term, which influences contaminant accumulation and the health of aquatic life in water associated with coal-fired power plants

    Isotopic Imprints of Mountaintop Mining Contaminants

    No full text
    Mountaintop mining (MTM) is the primary procedure for surface coal exploration within the central Appalachian region of the eastern United States, and it is known to contaminate streams in local watersheds. In this study, we measured the chemical and isotopic compositions of water samples from MTM-impacted tributaries and streams in the Mud River watershed in West Virginia. We systematically document the isotopic compositions of three major constituents: sulfur isotopes in sulfate (δ<sup>34</sup>S<sub>SO4</sub>), carbon isotopes in dissolved inorganic carbon (δ<sup>13</sup>C<sub>DIC</sub>), and strontium isotopes (<sup>87</sup>Sr/<sup>86</sup>Sr). The data show that δ<sup>34</sup>S<sub>SO4</sub>, δ<sup>13</sup>C<sub>DIC</sub>, Sr/Ca, and <sup>87</sup>Sr/<sup>86</sup>Sr measured in saline- and selenium-rich MTM impacted tributaries are distinguishable from those of the surface water upstream of mining impacts. These tracers can therefore be used to delineate and quantify the impact of MTM in watersheds. High Sr/Ca and low <sup>87</sup>Sr/<sup>86</sup>Sr characterize tributaries that originated from active MTM areas, while tributaries from reclaimed MTM areas had low Sr/Ca and high <sup>87</sup>Sr/<sup>86</sup>Sr. Leaching experiments of rocks from the watershed show that pyrite oxidation and carbonate dissolution control the solute chemistry with distinct <sup>87</sup>Sr/<sup>86</sup>Sr ratios characterizing different rock sources. We propose that MTM operations that access the deeper Kanawha Formation generate residual mined rocks in valley fills from which effluents with distinctive <sup>87</sup>Sr/<sup>86</sup>Sr and Sr/Ca imprints affect the quality of the Appalachian watersheds

    Isotopic Imprints of Mountaintop Mining Contaminants

    No full text
    Mountaintop mining (MTM) is the primary procedure for surface coal exploration within the central Appalachian region of the eastern United States, and it is known to contaminate streams in local watersheds. In this study, we measured the chemical and isotopic compositions of water samples from MTM-impacted tributaries and streams in the Mud River watershed in West Virginia. We systematically document the isotopic compositions of three major constituents: sulfur isotopes in sulfate (δ<sup>34</sup>S<sub>SO4</sub>), carbon isotopes in dissolved inorganic carbon (δ<sup>13</sup>C<sub>DIC</sub>), and strontium isotopes (<sup>87</sup>Sr/<sup>86</sup>Sr). The data show that δ<sup>34</sup>S<sub>SO4</sub>, δ<sup>13</sup>C<sub>DIC</sub>, Sr/Ca, and <sup>87</sup>Sr/<sup>86</sup>Sr measured in saline- and selenium-rich MTM impacted tributaries are distinguishable from those of the surface water upstream of mining impacts. These tracers can therefore be used to delineate and quantify the impact of MTM in watersheds. High Sr/Ca and low <sup>87</sup>Sr/<sup>86</sup>Sr characterize tributaries that originated from active MTM areas, while tributaries from reclaimed MTM areas had low Sr/Ca and high <sup>87</sup>Sr/<sup>86</sup>Sr. Leaching experiments of rocks from the watershed show that pyrite oxidation and carbonate dissolution control the solute chemistry with distinct <sup>87</sup>Sr/<sup>86</sup>Sr ratios characterizing different rock sources. We propose that MTM operations that access the deeper Kanawha Formation generate residual mined rocks in valley fills from which effluents with distinctive <sup>87</sup>Sr/<sup>86</sup>Sr and Sr/Ca imprints affect the quality of the Appalachian watersheds
    corecore