5,820 research outputs found

    Density-equalizing maps for simply-connected open surfaces

    Full text link
    In this paper, we are concerned with the problem of creating flattening maps of simply-connected open surfaces in R3\mathbb{R}^3. Using a natural principle of density diffusion in physics, we propose an effective algorithm for computing density-equalizing flattening maps with any prescribed density distribution. By varying the initial density distribution, a large variety of mappings with different properties can be achieved. For instance, area-preserving parameterizations of simply-connected open surfaces can be easily computed. Experimental results are presented to demonstrate the effectiveness of our proposed method. Applications to data visualization and surface remeshing are explored

    Explosive rigidity percolation in kirigami

    Full text link
    Controlling the connectivity and rigidity of kirigami, i.e. the process of cutting paper to deploy it into an articulated system, is critical in the manifestations of kirigami in art, science and technology, as it provides the resulting metamaterial with a range of mechanical and geometric properties. Here we combine deterministic and stochastic approaches for the control of rigidity in kirigami using the power of kk choices, an approach borrowed from the statistical mechanics of explosive percolation transitions. We show that several methods for rigidifying a kirigami system by incrementally changing either the connectivity or the rigidity of individual components allow us to control the nature of the explosive transition by a choice of selection rules. Our results suggest simple lessons for the design and control of mechanical metamaterials

    Efficient conformal parameterization of multiply-connected surfaces using quasi-conformal theory

    Full text link
    Conformal mapping, a classical topic in complex analysis and differential geometry, has become a subject of great interest in the area of surface parameterization in recent decades with various applications in science and engineering. However, most of the existing conformal parameterization algorithms only focus on simply-connected surfaces and cannot be directly applied to surfaces with holes. In this work, we propose two novel algorithms for computing the conformal parameterization of multiply-connected surfaces. We first develop an efficient method for conformally parameterizing an open surface with one hole to an annulus on the plane. Based on this method, we then develop an efficient method for conformally parameterizing an open surface with kk holes onto a unit disk with kk circular holes. The conformality and bijectivity of the mappings are ensured by quasi-conformal theory. Numerical experiments and applications are presented to demonstrate the effectiveness of the proposed methods

    Free-boundary conformal parameterization of point clouds

    Full text link
    With the advancement in 3D scanning technology, there has been a surge of interest in the use of point clouds in science and engineering. To facilitate the computations and analyses of point clouds, prior works have considered parameterizing them onto some simple planar domains with a fixed boundary shape such as a unit circle or a rectangle. However, the geometry of the fixed shape may lead to some undesirable distortion in the parameterization. It is therefore more natural to consider free-boundary conformal parameterizations of point clouds, which minimize the local geometric distortion of the mapping without constraining the overall shape. In this work, we develop a free-boundary conformal parameterization method for disk-type point clouds, which involves a novel approximation scheme of the point cloud Laplacian with accumulated cotangent weights together with a special treatment at the boundary points. With the aid of the free-boundary conformal parameterization, high-quality point cloud meshing can be easily achieved. Furthermore, we show that using the idea of conformal welding in complex analysis, the point cloud conformal parameterization can be computed in a divide-and-conquer manner. Experimental results are presented to demonstrate the effectiveness of the proposed method
    • …
    corecore