2 research outputs found

    Discovery of <i>N</i>‑[5-(6-Chloro-3-cyano-1-methyl‑1<i>H</i>‑indol-2-yl)-pyridin-3-ylmethyl]-ethanesulfonamide, a Cortisol-Sparing CYP11B2 Inhibitor that Lowers Aldosterone in Human Subjects

    No full text
    Human clinical studies conducted with LCI699 established aldosterone synthase (CYP11B2) inhibition as a promising novel mechanism to lower arterial blood pressure. However, LCI699’s low CYP11B1/CYP11B2 selectivity resulted in blunting of adrenocorticotropic hormone-stimulated cortisol secretion. This property of LCI699 prompted its development in Cushing’s disease, but limited more extensive clinical studies in hypertensive populations, and provided an impetus for the search for cortisol-sparing CYP11B2 inhibitors. This paper summarizes the discovery, pharmacokinetics, and pharmacodynamic data in preclinical species and human subjects of the selective CYP11B2 inhibitor <b>8</b>

    Structure–Activity Relationships, Pharmacokinetics, and in Vivo Activity of CYP11B2 and CYP11B1 Inhibitors

    No full text
    CYP11B2, the aldosterone synthase, and CYP11B1, the cortisol synthase, are two highly homologous enzymes implicated in a range of cardiovascular and metabolic diseases. We have previously reported the discovery of LCI699, a dual CYP11B2 and CYP11B1 inhibitor that has provided clinical validation for the lowering of plasma aldosterone as a viable approach to modulate blood pressure in humans, as well normalization of urinary cortisol in Cushing’s disease patients. We now report novel series of aldosterone synthase inhibitors with single-digit nanomolar cellular potency and excellent physicochemical properties. Structure–activity relationships and optimization of their oral bioavailability are presented. An illustration of the impact of the age of preclinical models on pharmacokinetic properties is also highlighted. Similar biochemical potency was generally observed against CYP11B2 and CYP11B1, although emerging structure–selectivity relationships were noted leading to more CYP11B1-selective analogs
    corecore