208 research outputs found

    Discovery of Atomic and Molecular Mid-Infrared Emission Lines in Off-Nuclear Regions of NGC 1275 and NGC 4696 with the \u3cem\u3eSpitzer Space Telescope\u3c/em\u3e

    Get PDF
    We present Spitzer high-resolution spectra of off-nuclear regions in the central cluster galaxies NGC 1275 and NGC 4696 in the Perseus and Centaurus clusters, respectively. Both objects are surrounded by extensive optical emission-line filamentary nebulae, bright outer parts of which are the targets of our observations. The 10–37 μm spectra show strong pure-rotational lines from molecular hydrogen revealing a molecular component to the filaments which has an excitation temperature of ∼300−400 K. The flux in the 0−0 S(1) molecular hydrogen line correlates well with the strength of the optical lines, having about 3 per cent of the Hα+[N II] emission. The 11.3-μm polycyclic aromatic hydrocarbon feature is seen in some spectra. Emission is also seen from both low- and high-ionization fine-structure lines. Molecular hydrogen cooler than ∼400 K dominates the mass of the outer filaments; the nebulae are predominantly molecular

    The Origin of Molecular Hydrogen Emission in Cooling-Flow Filaments

    Get PDF
    The optical filaments found in many cooling flows in galaxy clusters consist of low-density (∼103 cm−3) cool (∼103 K) gas surrounded by significant amounts of cosmic-ray and magnetic field energy. Their spectra show anomalously strong low-ionization and molecular emission lines when compared with Galactic molecular clouds exposed to ionizing radiation such as the Orion complex. Previous studies have shown that the spectra cannot be produced by O-star photoionization. Here, we calculate the physical conditions in dusty gas that is well shielded from external sources of ionizing photons and is energized either by cosmic rays or dissipative magnetohydrodynamics waves. Strong molecular hydrogen lines, with relative intensities similar to those observed, are produced. Selection effects introduced by the microphysics produce a correlation between the H2 line upper level energy and the population temperature. These selection effects allow a purely collisional gas to produce H2emission that masquerades as starlight-pumped H2 but with intensities that are far stronger. This physics may find application to any environment where a broad range of gas densities or heating rates occur

    Detection of Optical Coronal Emission from 10\u3csup\u3e6\u3c/sup\u3e-K Gas in the Core of the Centaurus Cluster

    Get PDF
    We report a detection (3.5 × 1037± 5.6 × 1036 erg s−1) of the optical coronal emission line [Fe X] λ6374 and upper limits of four other coronal lines using high-resolution VIMOS spectra centred on NGC 4696, the brightest cluster galaxy in the Centaurus cluster. Emission from these lines is indicative of gas at temperatures between 1 × 106−5 × 106 K, so traces the interstellar gas in NGC 4696. The rate of cooling derived from the upper limits is consistent with the cooling rate from X-ray observations (∼10 M⊙ yr−1); however, we detect twice the luminosity expected for [FeX] λ6374 emission, at 106 K, our lowest temperature probe. We suggest this emission is due to the gas being heated rather than cooling out of the intracluster medium. We detect no coronal lines from [Ca XV], which are expected from the 5 × 106 K gas seen near the centre in X-rays withChandra. Calcium is, however, likely to be depleted from the gas phase on to dust grains in the central regions of NGC 4696

    Microtearding mode study in NSTX using machine learning enhanced reduced model

    Full text link
    This article presents a survey of NSTX cases to study the microtearing mode (MTM) stabilities using the newly developed global reduced model for Slab-Like Microtearing modes (SLiM). A trained neutral network version of SLiM enables rapid assessment (0.05s/mode) of MTM with 98%98\% accuracy providing an opportunity for systemic equilibrium reconstructions based on the matching of experimentally observed frequency bands and SLiM prediction across a wide range of parameters. Such a method finds some success in the NSTX discharges, the frequency observed in the experiment matches with what SLiM predicted. Based on the experience with SLiM analysis, a workflow to estimate the potential MTM frequency for a quick assessment based on experimental observation has been established

    \u3cem\u3eHerschel\u3c/em\u3e Observations of the Centaurus Oluster - the Dynamics of Cold Gas in a Cool Core

    Get PDF
    Brightest cluster galaxies (BCGs) in the cores of galaxy clusters have distinctly different properties from other low-redshift massive ellipticals. The majority of the BCGs in cool-core clusters show signs of active star formation. We present observations of NGC 4696, the BCG of the Centaurus galaxy cluster, at far-infrared (FIR) wavelengths with theHerschel space telescope. Using the PACS spectrometer, we detect the two strongest coolants of the interstellar medium, [C II] at 157.74 μm and [O I] at 63.18 μm, and in addition [N II] at 121.90 μm. The [C II] emission is extended over a region of 7 kpc with a similar spatial morphology and kinematics to the optical Hα emission. This has the profound implication that the optical hydrogen recombination line, Hα, the optical forbidden lines, [N II] λ6583 Å, the soft X-ray filaments and the FIR [C II] line all have the same energy source. We also detect dust emission using the PACS and SPIRE photometers at all six wavebands. We perform a detailed spectral energy distribution fitting using a two-component modified blackbody function and find a cold 19-K dust component with mass 1.6 × 106 M⊙ and a warm 46-K dust component with mass 4.0 × 103 M⊙. The total FIR luminosity between 8 and 1000 μm is 7.5 × 108 L⊙, which using Kennicutt relation yields a low star formation rate of 0.13 M⊙ yr−1. This value is consistent with values derived from other tracers, such as ultraviolet emission. Combining the spectroscopic and photometric results together with optical Hα, we model emitting clouds consisting of photodissociation regions adjacent to ionized regions. We show that in addition to old and young stellar populations, there is another source of energy, such as cosmic rays, shocks or reconnection diffusion, required to excite the Hα and [C II] filaments

    \u3cem\u3eHST\u3c/em\u3e Imaging of the Dusty Filaments and Nucleus Swirl in NGC4696 at the Centre of the Centaurus Cluster

    Get PDF
    Narrow-band HST imaging has resolved the detailed internal structure of the 10 kpc diameter H α+[N II] emission line nebulosity in NGC4696, the central galaxy in the nearby Centaurus cluster, showing that the dusty, molecular, filaments have a width of about 60 pc. Optical morphology and velocity measurements indicate that the filaments are dragged out by the bubbling action of the radio source as part of the active galactic nucleus feedback cycle. Using the drag force we find that the magnetic field in the filaments is in approximate pressure equipartition with the hot gas. The filamentary nature of the cold gas continues inwards, swirling around and within the Bondi accretion radius of the central black hole, revealing the magnetic nature of the gas flows in massive elliptical galaxies. HST imaging resolves the magnetic, dusty, molecular filaments at the centre of the Centaurus cluster to a swirl around and within the Bondi radius

    \u3cem\u3eHerschel\u3c/em\u3e Observations of FIR Emission Lines in Brightest Cluster Galaxies

    Get PDF
    The question of how much gas cools in the cores of clusters of galaxies has been the focus of many, multiwavelength studies in the past 30 years. In this letter we present the first detections of the strongest atomic cooling lines, [Cii], [Oi] and [Nii] in two strong cooling flow clusters, A1068 and A2597, using Herschel-PACS. These spectra indicate that the substantial mass of cold molecular gas (\u3e 109 M⊙) known to be present in these systems is being irradiated by intense UV radiation, most probably from young stars. The line widths of these FIR lines indicate that they share dynamics similar but not identical to other ionised and molecular gas traced by optical, near-infrared and CO lines. The relative brightness of the FIR lines compared to CO and FIR luminosity is consistent with other star-forming galaxies indicating that the properties of the molecular gas clouds in cluster cores and the stars they form are not unusual. These results provide additional evidence for a reservoir of cold gas that is fed by the cooling of gas in the cores of the most compact clusters and provide important diagnostics of the temperature and density of the dense clouds this gas resides in

    \u3cem\u3eHerschel\u3c/em\u3e Photometry of Brightest Cluster Galaxies in Cooling Flow Clusters

    Get PDF
    The dust destruction timescales in the cores of clusters of galaxies are relatively short given their high central gas densities. However, substantial mid-infrared and sub-mm emission has been detected in many brightest cluster galaxies. In this letter we present Herschel PACS and SPIRE photometry of the brightest cluster galaxy in three strong cooling flow clusters, A1068, A2597 and Zw3146. This photometry indicates that a substantial mass of cold dust is present (\u3e 3×107 M⊙) at temperatures significantly lower (20–28 K) than previously thought based on limited MIR and/or sub-mm results. The mass and temperature of the dust appear to match those of the cold gas traced by CO with a gas-to-dust ratio of 80–120

    Skin-impedance in Fabry Disease: A prospective, controlled, non-randomized clinical study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously demonstrated improved sweating after enzyme replacement therapy (ERT) in Fabry disease using the thermo-regularity sweat and quantitative sudomotor axon reflex tests. Skin-impedance, a measure skin-moisture (sweating), has been used in the clinical evaluation of burns and pressure ulcers using the portable dynamic dermal impedance monitor (DDIM) system.</p> <p>Methods</p> <p>We compared skin impedance measurements in hemizygous patients with Fabry disease (22 post 3-years of bi-weekly ERT and 5 ERT naive) and 22 healthy controls. Force compensated skin-moisture values were used for statistical analysis. Outcome measures included 1) moisture reading of the 100<sup>th </sup>repetitive reading, 2) rate of change, 3) average of 60–110<sup>th </sup>reading and 4) overall average of all readings.</p> <p>Results</p> <p>All outcome measures showed a significant difference in skin-moisture between Fabry patients and control subjects (p < 0.0001). There was no difference between Fabry patients on ERT and patients naïve to ERT. Increased skin-impedance values for the four skin-impedance outcome measures were found in a small number of dermatome test-sites two days post-enzyme infusions.</p> <p>Conclusion</p> <p>The instrument portability, ease of its use, a relatively short time required for the assessment, and the fact that DDIM system was able to detect the difference in skin-moisture renders the instrument a useful clinical tool.</p
    • …
    corecore