4,076 research outputs found

    Type II Quasars from the Sloan Digital Sky Survey: V. Imaging host galaxies with the Hubble Space Telescope

    Full text link
    Type II quasars are luminous Active Galactic Nuclei whose centers are obscured by large amounts of gas and dust. In this paper we present 3-band HST images of nine type II quasars with redshifts 0.2 < z < 0.4 selected from the Sloan Digital Sky Survey based on their emission line properties. The intrinsic luminosities of these AGN are estimated to be -24 > M_B > -26, but optical obscuration allows their host galaxies to be studied unencumbered by bright nuclei. Each object has been imaged in three continuum filters (`UV', `blue' and `yellow') placed between the strong emission lines. The spectacular, high quality images reveal a wealth of details about the structure of the host galaxies and their environments. Six of the nine galaxies in the sample are ellipticals with de Vaucouleurs light profiles, one object has a well-defined disk component and the remaining two have marginal disks. Stellar populations of type II quasar hosts are more luminous (by a median of 0.3-0.7 mag, depending on the wavelength) and bluer (by about 0.4 mag) than are M* galaxies at the same redshift. When smooth fits to stellar light are subtracted from the images, we find both positive and negative residuals that become more prominent toward shorter wavelengths. We argue that the negative residuals are due to kpc-scale dust obscuration, while most positive residuals are due to the light from the nucleus scattered off interstellar material in the host galaxy. Scattered light makes a significant contribution to the broad band continuum emission and can be the dominant component of the extended emission in the UV in extreme cases.Comment: 51 pages, including 12 grey scale figures, 4 color figures, 5 tables. In press in AJ. Version with higher-resolution images available at http://www.astro.princeton.edu/~nadia/qso2.html. (Minor changes in response to the referee report

    Simultaneous Determination of 3-mercaptopyruvate and Cobinamide in Plasma by Liquid Chromatography–tandem Mass Spectrometry

    Get PDF
    The current suite of Food and Drug Administration (FDA) approved antidotes (i.e., sodium nitrite, sodium thiosulfate, and hydroxocobalamin) are effective for treating cyanide poisoning, but individually, each antidote has major limitations (e.g., large effective dosage or delayed onset of action). To mitigate these limitations, next-generation cyanide antidotes are being investigated, including 3-mercaptopyruvate (3-MP) and cobinamide (Cbi). Analytical methods capable of detecting these therapeutics individually and simultaneously (for combination therapy) are essential for the development of 3-MP and Cbi as potential cyanide antidotes. Therefore, a liquid chromatography–tandem mass-spectrometry method for the simultaneous analysis of 3-MP and Cbi was developed. Sample preparation of 3-MP consisted of spiking plasma with an internal standard (13C3-3-MP), precipitation of plasma proteins, and derivatizing 3-MP with monobromobimane to produce 3-mercaptopyruvate-bimane. Preparation of Cbi involved denaturing plasma proteins with simultaneous addition of excess cyanide to convert each Cbi species to dicyanocobinamide (Cbi(CN)2). The limits of detection for 3-MP and Cbi were 0.5 μM and 0.2 μM, respectively. The linear ranges were 2–500 μM for 3-MP and 0.5–50 μM for Cbi. The accuracy and precision for 3-MP were 100 ± 9% and \u3c8.3% relative standard deviation (RSD), respectively. For Cbi(CN)2, the accuracy was 100 ± 13% and the precision was \u3c9.5% RSD. The method presented here was used to determine 3-MP and Cbi from treated animals and may ultimately facilitate FDA approval of these antidotes for treatment of cyanide poisoning

    Economic evaluation of the specialized donor care facility for thoracic organ donor management

    Get PDF
    Background: Over the last decade two alternative models of donor care have emerged in the United States: the conventional model, whereby donors are managed at the hospital where brain death occurs, and the specialized donor care facility (SDCF), in which brain dead donors are transferred to a SDCF for medical optimization and organ procurement. Despite increasing use of the SDCF model, its cost-effectiveness in comparison to the conventional model remains unknown. Methods: We performed an economic evaluation of the SDCF and conventional model of donor care from the perspective of U.S. transplant centers over a 2-year study period. In this analysis, we utilized nationwide data from the Scientific Registry of Transplant Recipients and controlled for donor characteristics and patterns of organ sharing across the nation\u27s organ procurement organizations (OPOs). Subgroup analysis was performed to determine the impact of the SDCF model on thoracic organ transplants. Results: A total of 38,944 organ transplants were performed in the U.S. during the study period from 13,539 donors with an observed total organ cost of 1.36billion.IfeveryOPOassumedthecostandeffectivenessoftheSDCFmodel,apredicted39,155organtransplants(+211)wouldhavebeenperformedwithapredictedtotalorgancostof1.36 billion. If every OPO assumed the cost and effectiveness of the SDCF model, a predicted 39,155 organ transplants (+211) would have been performed with a predicted total organ cost of 1.26 billion (-100million).SubgroupanalysisofthoracicorgansrevealedthattheSDCFmodelwouldleadtoapredicted156additionaltransplantswithacostsavingof100 million). Subgroup analysis of thoracic organs revealed that the SDCF model would lead to a predicted 156 additional transplants with a cost saving of 24.6 million. Conclusions: The U.S. SDCF model may be a less costly and more effective means of multi-organ donor management, particularly for thoracic organ donors, compared to the conventional hospital-based model

    Psychosocial correlates of dietary fat intake in African-American adults: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current dietary guidelines recommend that dietary fat should comprise 20–35% percent of total energy intake, with less than 10% of energy from saturated fat. However, many Americans exceed these goals and data suggest that African Americans tend to consume a higher percentage of energy from dietary fat than Whites. Because diets low in dietary fat, particularly saturated fat, are associated with lower risk for many chronic illnesses, it is important to identify strategies to reduce high fat intakes. This study examined associations of psychosocial factors with dietary fat intake in African American adults 18 to 70 years.</p> <p>Methods</p> <p>Data are self-reported from a cross-sectional survey of African Americans (n = 658) using an 11-page questionnaire, collected from June to October 2003. Associations of psychosocial (predisposing, reinforcing, and enabling) factors based on the PRECEDE framework, dietary fat-related behaviors, and participant characteristics (e.g., age, sex, education, BMI) with total and saturated fat consumption are described using linear regression and analysis of variance.</p> <p>Results</p> <p>The mean age of participants was 43.9 years, 57% were female, 37% were college graduates, and 76% were overweight/obese. Respondents with lower fat intakes were female, older, had high education and very good/excellent perceived health. Among the psychosocial factors, the strongest (inverse) associations with fat intake were with two predisposing factors: <it>belief in the importance of a low-fat diet </it>(both genders) and <it>high self-efficacy </it>(women only). Fat intake was also significantly lower among participants who could <it>count on those close for encouragement to eat healthy foods </it>(a reinforcing factor) and among men who <it>needed more information about preparing healthy foods </it>(an enabling factor).</p> <p>Conclusion</p> <p>Dietary interventions to decrease fat intake in African American adults may benefit from incorporating predisposing factors, such as personal beliefs and self-efficacy, in their design and implementation.</p

    A framework for evaluating the influence of climate, dispersal limitation, and biotic interactions using fossil pollen associations across the late Quaternary

    Get PDF
    Environmental conditions, dispersal lags, and interactions among species are major factors structuring communities through time and across space. Ecologists have emphasized the importance of biotic interactions in determining local patterns of species association. In contrast, abiotic limits, dispersal limitation, and historical factors have commonly been invoked to explain community structure patterns at larger spatiotemporal scales, such as the appearance of late Pleistocene no-analog communities or latitudinal gradients of species richness in both modern and fossil assemblages. Quantifying the relative influence of these processes on species co-occurrence patterns is not straightforward. We provide a framework for assessing causes of species associations by combining a null-model analysis of co-occurrence with additional analyses of climatic differences and spatial pattern for pairs of pollen taxa that are significantly associated across geographic space. We tested this framework with data on associations among 106 fossil pollen taxa and paleoclimate simulations from eastern North America across the late Quaternary. The number and proportion of significantly associated taxon pairs increased over time, but only 449 of 56 194 taxon pairs were significantly different from random. Within this significant subset of pollen taxa, biotic interactions were rarely the exclusive cause of associations. Instead, climatic or spatial differences among sites were most frequently associated with significant patterns of taxon association. Most taxon pairs that exhibited co-occurrence patterns indicative of biotic interactions at one time did not exhibit significant associations at other times. Evidence for environmental filtering and dispersal limitation was weakest for aggregated pairs between 16 and 11 kyr BP, suggesting enhanced importance of positive species interactions during this interval. The framework can thus be used to identify species associations that may reflect biotic interactions because these associations are not tied to environmental or spatial differences. Furthermore, temporally repeated analyses of spatial associations can reveal whether such associations persist through time
    • …
    corecore