8,231 research outputs found

    Pulsed Laser Coating of Bioceramic (HAp) and NiTi Nanoparticles on Metallic Implants

    Get PDF
    This research deals with increasing the biocompatibility of the bio implants which have a global market valued more than $94.1 billion . The surface of the metal alloys used for the bone implants need to be coated with bio compatible materials like HAp(Hydroxyapatite), graphene, etc. in order to promote the growth of cells(osteoblasts) on the surface of the implants. Various techniques like plasma spray coating, ion beam sputter coating, etc. have been used before to coat such materials on a substrate, however these have faced problems of coating quality. In order to perfect this coating, that is make it more durable and effective, pulsed laser sintering is performed on an alloy substrate with a gradient precoating of nano HAp mixed with nano Ti and nano Ni particles in different ratios. During laser sintering, the metal nanoparticles melt to entrap the HAp nanoparticles among them and the HAp particles being transparent to the laser wavelength used(1064nm) do not decompose and thus create a biocompatible surface and a strong adhesive bond with the surface of the substrate. This pulsed laser sintered substrate is analyzed under SEM and EDS to confirm the morphology and composition of the coating. Some other advantages of such a coating method are uniform coating, strong mechanical properties, high porosity and a durable coat on a bio-implant as proven before with scratch tests performed on coatings using Ti nanoparticles alone and with NiTi nanoparticles , the mechanical properties of the coating are expected to be enhanced

    Enhancement of osteoblast activity on nanostructured NiTi/hydroxyapatite coatings on additive manufactured NiTi metal implants by nanosecond pulsed laser sintering

    Get PDF
    Background: The osteoinductive behaviors of nitinol (NiTi)-based metal implants for bone regeneration are largely dependent on their surface composition and topology. Continuous-mode laser sintering often results in complete melting of the materials and aggregation of particles, which lack control of heat transfer, as well as microstructural changes during sintering of the nanocomposite materials. Methods: In the current study, in situ direct laser deposition was used to additively manufacture three-dimensional NiTi structures from Ni and Ti powders. The mechanical property of NiTi has been shown to be similar to bone. Nanosecond pulsed laser sintering process was then utilized to generate a nanoporous composite surface with NiTi alloy and hydroxyapatite (HA) by ultrafast laser heating and cooling of Ni, Ti, and HA nanoparticles mixtures precoated on the 3D NiTi substrates; HA was added in order to improve the biocompatibility of the alloy. We then studied the underlying mechanism in the formation of NiTi/HA nanocomposite, and the synergistic effect of the sintered HA component and the nanoporous topology of the composite coating. In addition, we examined the activity of bone-forming osteoblasts on the NiTi/HA surfaces. For this, osteoblast cell morphology and various biomarkers were examined to evaluate cellular activity and function. Results: We found that the nanoscale porosity delivered by nanosecond pulsed laser sintering and the HA component positively contributed to osteoblast differentiation, as indicated by an increase in the expression of collagen and alkaline phosphatase, both of which are necessary for osteoblast mineralization. In addition, we observed topological complexities which appeared to boost the activity of osteoblasts, including an increase in actin cytoskeletal structures and adhesion structures. Conclusion: These findings demonstrate that the pulsed laser sintering method is an effective tool to generate biocompatible coatings in complex alloy-composite material systems with desired composition and topology. Our findings also provide a better understanding of the osteoinductive behavior of the sintered nanocomposite coatings for use in orthopedic and bone regeneration applications

    Laser sintering of separated and uniformly distributed multiwall carbon nanotubes integrated iron nanocomposites

    Get PDF
    Uniform distribution of carbon nanotubes (CNTs) in metal matrix during additive manufacturing of nanocomposites is always a challenge since the CNTs tend to aggregate in the molten pool. In this study, Multiwall carbon nanotubes (MWNTs) were separated and distributed uniformly into iron matrix by laser sintering process. MWNTs and iron powders were mixed together by magnetic stir, coated on steel 4140 surface, followed by laser sintering. Due to the fast heating and cooling rate, the CNTs are evenly distributed in the metal matrix. The temperature field was calculated by multiphysics simulation considering size effects, including size dependent melting temperature, thermal conductivity, and heat capacity. The SEM, TEM, and XRD were used to understand the laser sintering of CNT integrated nanocomposites. The results proved the feasibility of this technique to synthesize MWNTS integrated metal matrix nanocomposites. (C) 2014 AIP Publishing LLC

    A photonic crystal cavity-optical fiber tip nanoparticle sensor for biomedical applications

    Full text link
    We present a sensor capable of detecting solution-based nanoparticles using an optical fiber tip functionalized with a photonic crystal cavity. When sensor tips are retracted from a nanoparticle solution after being submerged, we find that a combination of convective fluid forces and optically-induced trapping cause an aggregation of nanoparticles to form directly on cavity surfaces. A simple readout of quantum dot photoluminescence coupled to the optical fiber shows that nanoparticle presence and concentration can be detected through modified cavity properties. Our sensor can detect both gold and iron oxide nanoparticles and can be utilized for molecular sensing applications in biomedicine.Comment: 13 pages, 5 figure

    Vibration damping and robust control of the JPL/AFAL experiment using µ-synthesis

    Get PDF
    The technology for controlling elastic deformations of flexible structures is one of the key considerations for future space initiatives. A vital area needed to achieve this objective is the development of a control design methodology applicable to future structures. The mu -synthesis technique is employed to design a high-performance vibration attenuation controller for the JPL/AFAL experimental flexible antenna structure. The results presented deal primarily with the control of first two global flexible modes using only two hub actuators and two hub sensors. Implementation of the multivariable control laws based on a finite-element model is presented. All results are from actual implementation on the JPL/AFAL flexible structure testbed

    Direct pulsed laser crystallization of nanocrystals for absorbent layers in photovoltaics: Multiphysics simulation and experiment

    Get PDF
    Direct pulsed laser crystallization (DPLC) of nanoparticles of photoactive material-Copper Indium Selenide (nanoCIS) is investigated by multiphysics simulation and experiments. Laser interaction with nanoparticles is fundamentally different from their bulk counterparts. A multiphysics electromagnetic-heat transfer model is built to simulate DPLC of nanoparticles. It is found smaller photoactive nanomaterials (e.g., nanoCIS) require less laser fluence to accomplish the DPLC due to their stronger interactions with incident laser and lower melting point. The simulated optimal laser fluence is validated by experiments observation of ideal microstructure. Selectivity of DPLC process is also confirmed by multiphysics simulation and experiments. The combination effects of pulse numbers and laser intensity to trigger laser ablation are investigated in order to avoid undesired results during multiple laser processing. The number of pulse numbers is inversely proportional to the laser fluence to trigger laser ablation. (C) 2013 AIP Publishing LLC

    Evaporation of Lennard-Jones Fluids

    Full text link
    Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/TcT/T_c, where TcT_c is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.Comment: revised version, 15 pages, 15 figures, to appear in J. Chem. Phy

    Ultraviolet laser crystallized ZnO:Al films on sapphire with high Hall mobility for simultaneous enhancement of conductivity and transparency

    Get PDF
    One of the most challenging issues in transparent conductive oxides (TCOs) is to improve their conductivity without compromising transparency. High conductivity in TCO films often comes from a high carrier concentration, which is detrimental to transparency due to free carrier absorption. Here we show that UV laser crystallization (UVLC) of aluminum-doped ZnO (AZO) films prepared by pulsed laser deposition on sapphire results in much higher Hall mobility, allowing relaxation of the constraints of the conductivity/transparency trade-off. X-ray diffraction patterns and morphological characterizations show grain growth and crystallinity enhancement during UVLC, resulting in less film internal imperfections. Optoelectronic measurements show that UVLC dramatically improves the electron mobility, while the carrier concentration decreases which in turn simultaneously increases conductivity and transparency. AZO films under optimized UVLC achieve the highest electron mobility of 79 cm(2)/V s at a low carrier concentration of 7.9 x 10(+19) cm(-3). This is realized by a laser crystallization induced decrease of both grain boundary density and electron trap density at grain boundaries. The infrared (IR) to mid-IR range transmittance spectrum shows UVLC significantly enhances the AZO film transparency without compromising conductivity. (C) 2014 AIP Publishing LLC

    Three-dimensional shear in granular flow

    Full text link
    The evolution of granular shear flow is investigated as a function of height in a split-bottom Couette cell. Using particle tracking, magnetic-resonance imaging, and large-scale simulations we find a transition in the nature of the shear as a characteristic height H∗H^* is exceeded. Below H∗H^* there is a central stationary core; above H∗H^* we observe the onset of additional axial shear associated with torsional failure. Radial and axial shear profiles are qualitatively different: the radial extent is wide and increases with height while the axial width remains narrow and fixed.Comment: 4 pages, 5 figure
    • …
    corecore