9,504 research outputs found

    Surface and Interface Properties of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C

    Get PDF
    The surface and interface properties of Pd(0.9)Cr(0.1)/SiC Schottky diode gas sensors both before and after annealing are investigated using Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd(x)Si only in a very narrow interfacial region. After annealing for 250 hours at 425 C, the surface of the Schottky contact area has much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Palladium silicides (Pd(x)Si) formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(0.9)Cr(0.1) film are likely responsible for significantly improved device sensitivity

    p120 catenin associates with kinesin and facilitates the transport of cadherin–catenin complexes to intercellular junctions

    Get PDF
    p120 catenin (p120) is a component of adherens junctions and has been implicated in regulating cadherin-based cell adhesion as well as the activity of Rho small GTPases, but its exact roles in cell–cell adhesion are unclear. Using time-lapse imaging, we show that p120-GFP associates with vesicles and exhibits unidirectional movements along microtubules. Furthermore, p120 forms a complex with kinesin heavy chain through the p120 NH2-terminal head domain. Overexpression of p120, but not an NH2-terminal deletion mutant deficient in kinesin binding, recruits endogenous kinesin to N-cadherin. Disruption of the interaction between N-cadherin and p120, or the interaction between p120 and kinesin, leads to a delayed accumulation of N-cadherin at cell–cell contacts during calcium-initiated junction reassembly. Our analyses identify a novel role of p120 in promoting cell surface trafficking of cadherins via association and recruitment of kinesin

    Surface and Interface Study of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C

    Get PDF
    The surface and interface properties of Pd(sub 0.9)Cr(sub 0.1/SiC Schottky diode gas sensor both before and after annealing are investigated using Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd(sub x)Si only in a very narrow interfacial region. After annealing for 250 hours at 425 deg. C, the surface of the Schottky contact area has much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Pd(sub x)Si formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(sub 0.9)Cr(sub 0.1) film are likely responsible for significantly improved device sensitivity

    Photoperiod Control of Poplar Bark Storage Protein Accumulation

    Full text link

    Estimated dietary phytoestrogen intake and major food sources among women during the year before pregnancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phytoestrogens may be associated with a variety of different health outcomes, including outcomes related to reproductive health. Recently published data on phytoestrogen content of a wide range of foods provide an opportunity to improve estimation of dietary phytoestrogen intake.</p> <p>Methods</p> <p>Using the recently published data, we estimated intake among a representative sample of 6,584 women of reproductive age from a multi-site, population-based case-control study, the National Birth Defects Prevention Study (NBDPS). The NBDPS uses a shortened version of the Willett food frequency questionnaire to estimate dietary intake during the year before pregnancy. We estimated intake among NBDPS control mothers.</p> <p>Results</p> <p>Lignans contributed 65% of total phytoestrogen intake; isoflavones, 29%; and coumestrol, 5%. Top contributors to total phytoestrogen intake were vegetables (31%) and fruit (29%); for isoflavones, dairy (33%) and fruit (21%); for lignans, vegetables (40%) and fruit (29%); and for coumestans, fruit (55%) and dairy (18%). Hispanic women had higher phytoestrogen intake than non-Hispanic white or black women. Associations with maternal age and folic acid-containing supplements were more modest but indicated that older mothers and mothers taking supplements had higher intake.</p> <p>Conclusions</p> <p>The advantage of the approach used for the current analysis lies in its utilization of phytoestrogen values derived from a single laboratory that used state-of-the-art measurement techniques. The database we developed can be applied directly to other studies using food frequency questionnaires, especially the Willett questionnaire. The database, combined with consistent dietary intake assessment, provides an opportunity to improve our ability to understand potential associations of phytoestrogen intake with health outcomes.</p

    Signatures of Drug Sensitivity in Nonsmall Cell Lung Cancer

    Get PDF
    We profiled receptor tyrosine kinase pathway activation and key gene mutations in eight human lung tumor cell lines and 50 human lung tumor tissue samples to define molecular pathways. A panel of eight kinase inhibitors was used to determine whether blocking pathway activation affected the tumor cell growth. The HER1 pathway in HER1 mutant cell lines HCC827 and H1975 were found to be highly activated and sensitive to HER1 inhibition. H1993 is a c-MET amplified cell line showing c-MET and HER1 pathway activation and responsiveness to c-MET inhibitor treatment. IGF-1R pathway activated H358 and A549 cells are sensitive to IGF-1R inhibition. The downstream PI3K inhibitor, BEZ-235, effectively inhibited tumor cell growth in most of the cell lines tested, except the H1993 and H1650 cells, while the MEK inhibitor PD-325901 was effective in blocking the growth of KRAS mutated cell line H1734 but not H358, A549 and H460. Hierarchical clustering of primary tumor samples with the corresponding tumor cell lines based on their pathway signatures revealed similar profiles for HER1, c-MET and IGF-1R pathway activation and predict potential treatment options for the primary tumors based on the tumor cell lines response to the panel of kinase inhibitors

    XMM-Newton and optical follow-up observations of three new polars from the Sloan Digital Sky Survey

    Full text link
    We report follow-up XMM-Newton and optical observations of three new polars found in the Sloan Digital Sky Survey. Simple modeling of the X-ray spectra, and consideration of the details of the X-ray and optical lightcurves corroborate the polar nature of these three systems and provide further insights into their accretion characteristics. During the XMM-Newton observation of SDSS J072910.68+365838.3, X-rays are undetected apart from a probable flare event, during which we find both the typical hard X-ray bremsstrahlung component and a very strong line O VII (E=0.57 keV), but no evidence of a soft blackbody contribution. In SDSS J075240.45+362823.2 we identify an X-ray eclipse at the beginning of the observation, roughly in phase with the primary minimum of the optical broad band curve. The X-ray spectra require the presence of both hard and soft X-ray components, with their luminosity ratio consistent with that found in other recent XMM-Newton results on polars. Lastly, SDSS J170053.30+400357.6 appears optically as a very typical polar, however its large amplitude optical modulation is 180 degrees out of phase with the variation in our short X-ray lightcurve.Comment: 9 pages, 9 figures, accepted for publication in the ApJ (January 2005

    An Overview of Wide Bandgap Silicon Carbide Sensors and Electronics Development at NASA Glenn Research Center

    Get PDF
    A brief overview is presented of the sensors and electronics development work ongoing at NASA Glenn Research Center which is intended to meet the needs of future aerospace applications. Three major technology areas are discussed: 1) high temperature SiC electronics, 2) SiC gas sensor technology development, and 3) packaging of harsh environment devices. Highlights of this work include world-record operation of SiC electronic devices including 500?C JFET transistor operation with excellent properties, atomically flat SiC gas sensors integrated with an on-chip temperature detector/heater, and operation of a packaged AC amplifier. A description of the state-of-the-art is given for each topic. It is concluded that significant progress has been made and that given recent advancements the development of high temperature smart sensors is envisioned

    Characterizing pre-dialysis care in the era of eGFR reporting: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic kidney disease (CKD) is a common disorder associated with increased morbidity and mortality. Primary care physicians (PCPs) care for the majority of pre-dialysis CKD patients; however, PCPs often do not recognize the presence of CKD based on serum creatinine levels. Prior studies suggest that PCPs and nephrologists deliver suboptimal CKD care. One strategy to improve disease awareness and treatment is estimated glomerular filtration rate (eGFR) reporting. We examined PCP and nephrologist CKD practices before and after routine eGFR reporting.</p> <p>Methods</p> <p>We conducted a retrospective cohort study of patients with CKD 3b-4 (eGFR < 45) seen at a university-based, outpatient primary care clinic. Using a chi-square or Fisher's exact test, we compared co-management rates, renal protective strategies, CKD documentation, and laboratory processes of care in 274 patients and 266 patients seen in a 6-month period prior to and following eGFR implementation, respectively.</p> <p>Results</p> <p>CKD co-management increased from 22.6% pre-eGFR to 48.5% post-eGFR (P < 0.0001). eGFR reporting did not improve angiotensin converting enzyme inhibitor or angiotensin receptor blocker use or quantitative urinary testing. However, non-steroidal anti-inflammatory drug avoidance (pre-eGFR 81.8% vs. post- eGFR 90.6%, P = 0.003) and phosphorus and parathyroid hormone testing improved (pre-eGFR vs. post-eGFR: 32.5% vs. 51.5%, P < 0.0001; 12.4% vs. 36.1%, P < 0.0001 respectively).</p> <p>Conclusions</p> <p>A marked increase in CKD co-management was observed following eGFR implementation. Although some improvements in processes of care were noted, this did not include angiotensin converting enzyme inhibitor or angiotensin receptor blocker use. Overall care remained suboptimal despite eGFR reporting; further strategies are needed to improve PCP and nephrologist CKD care.</p

    Electrical Performance of a High Temperature 32-I/O HTCC Alumina Package

    Get PDF
    A high temperature co-fired ceramic (HTCC) alumina material was previously electrically tested at temperatures up to 550 C, and demonstrated improved dielectric performance at high temperatures compared with the 96% alumina substrate that we used before, suggesting its potential use for high temperature packaging applications. This paper introduces a prototype 32-I/O (input/output) HTCC alumina package with platinum conductor for 500 C low-power silicon carbide (SiC) integrated circuits. The design and electrical performance of this package including parasitic capacitance and parallel conductance of neighboring I/Os from 100 Hz to 1 MHz in a temperature range from room temperature to 550 C are discussed in detail. The parasitic capacitance and parallel conductance of this package in the entire frequency and temperature ranges measured does not exceed 1.5 pF and 0.05 microsiemens, respectively. SiC integrated circuits using this package and compatible printed circuit board have been successfully tested at 500 C for over 3736 hours continuously, and at 700 C for over 140 hours. Some test examples of SiC integrated circuits with this packaging system are presented. This package is the key to prolonged T greater than or equal to 500 C operational testing of the new generation of SiC high temperature integrated circuits and other devices currently under development at NASA Glenn Research Center
    corecore