101 research outputs found

    PPARγ, neuroinflammation, and disease

    Get PDF
    BACKGROUND: Peroxisome proliferator-activated receptors (PPARs) are a class of nuclear transcription factors that are activated by fatty acids and their derivatives. One of these, PPARγ, regulates responsiveness to insulin in adipose cells, and PPARγ-activating drugs such as pioglitazone are used in the treatment of type 2 diabetes. PPARγ acts in myeloid-lineage cells, including T-cells and macrophages, to suppress their activation and their elaboration of inflammatory molecules. PPARγ activation also suppresses the activated phenotype in microglia, suggesting that PPARγ-activating drugs may be of benefit in chronic neuroinflammatory diseases. Some, but not all, nonsteroidal anti-inflammatory agents (indomethacin and ibuprofen in particular) also have activating effects on PPARγ. DISCUSSION AND CONCLUSIONS: These observations suggest on the one hand a role for PPARγ-activating drugs in the treatment of chronic neuroinflammatory diseases-as shown for a patient with secondary progressive multiple sclerosis by Pershadsingh et al. in this issue of the Journal of Neuroinflammation-and suggest on the other hand a possible explanation for confusing and contradictory results in trials of nonsteroidal anti-inflammatory agents in Alzheimer's disease

    Therapeutic potential of nuclear receptor agonists in Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is characterized by an extensive accumulation of amyloid-β (Aβ) peptide, which triggers a set of deleterious processes, including synaptic dysfunction, inflammation, and neuronal injury, leading to neuronal loss and cognitive impairment. A large body of evidence supports that nuclear receptor (NR) activation could be a promising therapeutic approach for AD. NRs are ligand-activated transcription factors that regulate gene expression and have cell type-specific effects. In this review, we discuss the mechanisms that underlie the beneficial effects of NRs in AD. Moreover, we summarize studies reported in the last 10-15 years and their major outcomes arising from the pharmacological targeting of NRs in AD animal models. The dissection of the pathways regulated by NRs in the context of AD is of importance in identifying novel and effective therapeutic strategies

    The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease

    Get PDF
    Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease

    Nuclear Receptors as Therapeutic Targets for Neurodegenerative Diseases: Lost in Translation

    Get PDF
    Neurodegenerative diseases are characterized by a progressive loss of neurons that leads to a broad range of disabilities, including severe cognitive decline and motor impairment, for which there are no effective therapies. Several lines of evidence support a putative therapeutic role of nuclear receptors (NRs) in these types of disorders. NRs are ligand-activated transcription factors that regulate the expression of a wide range of genes linked to metabolism and inflammation. Although the activation of NRs in animal models of neurodegenerative disease exhibits promising results, the translation of this strategy to clinical practice has been unsuccessful. In this review we discuss the role of NRs in neurodegenerative diseases in light of preclinical and clinical studies, as well as new findings derived from the analysis of transcriptomic databases from humans and animal models. We discuss the failure in the translation of NR-based therapeutic approaches and consider alternative and novel research avenues in the development of effective therapies for neurodegenerative diseases

    Chronic impairment of ERK signaling in glutamatergic neurons of the forebrain does not affect spatial memory retention and LTP in the same manner as acute blockade of the ERK pathway

    Get PDF
    The ERK/MAPK signaling pathway has been extensively studied in the context of learning and memory. Defects in this pathway underlie genetic diseases associated with intellectual disability, including impaired learning and memory. Numerous studies have investigated the impact of acute ERK/MAPK inhibition on long-term potentiation and spatial memory. However, genetic knockouts of the ERKs have not been utilized to determine whether developmental perturbations of ERK/MAPK signaling affect LTP and memory formation in postnatal life. In this study, two different ERK2 conditional knockout mice were generated that restrict loss of ERK2 to excitatory neurons in the forebrain, but at different time-points (embryonically and post-natally). We found that embryonic loss of ERK2 had minimal effect on spatial memory retention and novel object recognition, while loss of ERK2 post-natally had more pronounced effects in these behaviors. Loss of ERK2 in both models showed intact LTP compared to control animals, while loss of both ERK1 and ERK2 impaired late phase LTP. These findings indicate that ERK2 is not necessary for LTP and spatial memory retention and provide new insights into the functional deficits associated with the chronic impairment of ERK signaling

    Nuclear receptor agonist-driven modification of inflammation and amyloid pathology enhances and sustains cognitive improvements in a mouse model of Alzheimer's disease

    Get PDF
    BACKGROUND: Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder characterized by pathological hallmarks of beta-amyloid plaque deposits, tau pathology, inflammation, and cognitive decline. Treatment remains a clinical obstacle due to lack of effective therapeutics. Agonists targeting nuclear receptors, such as bexarotene, reversed cognitive deficits regardless of treatment duration and age in murine models of AD. While bexarotene demonstrated marked efficacy in decreasing plaque levels following short-term treatment, prolonged treatment did not modulate plaque burden. This suggested that plaques might reform in mice treated chronically with bexarotene and that cessation of bexarotene treatment before plaques reform might alter amyloid pathology, inflammation, and cognition in AD mice. METHODS: We utilized one-year-old APP/PS1 mice that were divided into two groups. We treated one group of mice for 2 weeks with bexarotene. The other group of mice was treated for 2 weeks with bexarotene followed by withdrawal of drug treatment for an additional 2 weeks. Cognition was evaluated using the novel-object recognition test either at the end of bexarotene treatment or the end of the withdrawal period. We then analyzed amyloid pathology and microgliosis at the conclusion of the study in both groups. RESULTS: Bexarotene treatment enhanced cognition in APP/PS1 mice similar to previous findings. Strikingly, we observed sustained cognitive improvements in mice in which bexarotene treatment was discontinued for 2 weeks. We observed a sustained reduction in microgliosis and plaque burden following drug withdrawal exclusively in the hippocampus. CONCLUSIONS: Our findings demonstrate that bexarotene selectively modifies aspects of neuroinflammation in a region-specific manner to reverse hippocampal-dependent cognitive deficits in AD mice and may provide insight to inform future studies with nuclear receptor agonists

    Direct ipsilateral retinal projections in goldfish (Carassius auratus)

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/22948/1/0000515.pd

    Genetic Targeting of ERK1 Suggests a Predominant Role for ERK2 in Murine Pain Models

    Get PDF
    The extracellular signal-regulated kinase (ERK) isoforms, ERK1 and ERK2, are believed to be key signaling molecules in nociception and nociceptive sensitization. Studies utilizing inhibitors targeting the shared ERK1/2 upstream activator, mitogen-activated protein kinase kinase (MEK), and transgenic mice expressing a dominant negative form of MEK have established the importance of ERK1/2 signaling. However, these techniques do not discriminate between ERK1 and ERK2. To dissect the function of each isoform in pain, we utilized mice with a targeted genetic deletion of ERK1 (ERK1 KO) to test the hypothesis that ERK1 is required for behavioral sensitization in rodent pain models. Despite activation (phosphorylation) of ERK1 following acute noxious stimulation and in models of chronic pain, we found that ERK1 was not required for formalin-induced spontaneous behaviors, complete Freund’s adjuvant-induced heat and mechanical hypersensitivity, and spared nerve injury-induced mechanical hypersensitivity. However, ERK1 deletion did delay formalin-induced long-term heat hypersensitivity, without affecting formalin-induced mechanical hypersensitivity, suggesting that ERK1 partially shapes long-term responses to formalin. Interestingly, ERK1 deletion resulted in elevated basal ERK2 phosphorylation. However, this did not appear to influence nociceptive processing, since inflammation-induced ERK2 phosphorylation and pERK1/2 immunoreactivity in spinal cord were not elevated in ERK1 KO mice. Additionally, systemic MEK inhibition with SL327 attenuated formalin-induced spontaneous behaviors similarly in WT and ERK1 KO mice, indicating that unrelated signaling pathways do not functionally compensate for the loss of ERK1. Taken together, these results suggest that ERK1 plays a limited role in nociceptive sensitization and supports a predominant role for ERK2 in these processes

    The effect of amyloid on microglia-neuron interactions before plaque onset occurs independently of TREM2 in a mouse model of Alzheimer’s disease

    Get PDF
    Genetic studies identified mutations in several immune-related genes that confer increased risk for developing Alzheimer's disease (AD), suggesting a key role for microglia in AD pathology. Microglia are recruited to and actively modulate the local toxicity of amyloid plaques in models of AD through these cells' transcriptional and functional reprogramming to a disease-associated phenotype. However, it remains unknown whether microglia actively respond to amyloid accumulation before plaque deposition in AD. We compared microglial interactions with neurons that exhibit amyloid accumulation to those that do not in 1-month-old 5XFAD mice to determine which aspects of microglial morphology and function are altered by early 6E10+ amyloid accumulation. We provide evidence of preferential microglial process engagement of amyloid laden neurons. Microglia, on exposure to amyloid, also increase their internalization of neurites even before plaque onset. Unexpectedly, we found that triggering receptor expressed on myeloid cells 2 (TREM2), which is critical for microglial responses to amyloid plaque pathology later in disease, is not required for enhanced microglial interactions with neurons or neurite internalization early in disease. However, TREM2 was still required for early morphological changes exhibited by microglia. These data demonstrate that microglia sense and respond to amyloid accumulation before plaques form using a distinct mechanism from the TREM2-dependent pathway required later in disease

    TREM2 is required for microglial instruction of astrocytic synaptic engulfment in neurodevelopment

    Get PDF
    Variants in the microglial receptor TREM2 confer risk for multiple neurodegenerative diseases. However, it remains unknown how this receptor functions on microglia to modulate these diverse neuropathologies. To understand the role of TREM2 on microglia more generally, we investigated changes in microglial function in Trem2−/− mice. We found that loss of TREM2 impairs normal neurodevelopment, resulting in reduced synapse number across the cortex and hippocampus in 1-month-old mice. This reduction in synapse number was not due directly to alterations in interactions between microglia and synapses. Rather, TREM2 was required for microglia to limit synaptic engulfment by astrocytes during development. While these changes were largely normalized later in adulthood, high fat diet administration was sufficient to reinitiate TREM2-dependent modulation of synapse loss. Together, this identifies a novel role for microglia in instructing synaptic pruning by astrocytes to broadly regulate appropriate synaptic refinement, and suggests novel candidate mechanisms for how TREM2 and microglia could influence synaptic loss in brain injury and disease
    • …
    corecore