45 research outputs found

    Electromagnetic Treatment to Old Alzheimer's Mice Reverses β-Amyloid Deposition, Modifies Cerebral Blood Flow, and Provides Selected Cognitive Benefit

    Get PDF
    Few studies have investigated physiologic and cognitive effects of “long-term" electromagnetic field (EMF) exposure in humans or animals. Our recent studies have provided initial insight into the long-term impact of adulthood EMF exposure (GSM, pulsed/modulated, 918 MHz, 0.25–1.05 W/kg) by showing 6+ months of daily EMF treatment protects against or reverses cognitive impairment in Alzheimer's transgenic (Tg) mice, while even having cognitive benefit to normal mice. Mechanistically, EMF-induced cognitive benefits involve suppression of brain β-amyloid (Aβ) aggregation/deposition in Tg mice and brain mitochondrial enhancement in both Tg and normal mice. The present study extends this work by showing that daily EMF treatment given to very old (21–27 month) Tg mice over a 2-month period reverses their very advanced brain Aβ aggregation/deposition. These very old Tg mice and their normal littermates together showed an increase in general memory function in the Y-maze task, although not in more complex tasks. Measurement of both body and brain temperature at intervals during the 2-month EMF treatment, as well as in a separate group of Tg mice during a 12-day treatment period, revealed no appreciable increases in brain temperature (and no/slight increases in body temperature) during EMF “ON" periods. Thus, the neuropathologic/cognitive benefits of EMF treatment occur without brain hyperthermia. Finally, regional cerebral blood flow in cerebral cortex was determined to be reduced in both Tg and normal mice after 2 months of EMF treatment, most probably through cerebrovascular constriction induced by freed/disaggregated Aβ (Tg mice) and slight body hyperthermia during “ON" periods. These results demonstrate that long-term EMF treatment can provide general cognitive benefit to very old Alzheimer's Tg mice and normal mice, as well as reversal of advanced Aβ neuropathology in Tg mice without brain heating. Results further underscore the potential for EMF treatment against AD

    The potential of hematopoietic growth factors for treatment of Alzheimer's disease: a mini-review

    Get PDF
    There are no effective interventions that significantly forestall or reverse neurodegeneration and cognitive decline in Alzheimer's disease. In the past decade, the generation of new neurons has been recognized to continue throughout adult life in the brain's neurogenic zones. A major challenge has been to find ways to harness the potential of the brain's own neural stem cells to repair or replace injured and dying neurons. The administration of hematopoietic growth factors or cytokines has been shown to promote brain repair by a number of mechanisms, including increased neurogenesis, anti-apoptosis and increased mobilization of bone marrow-derived microglia into brain. In this light, cytokine treatments may provide a new therapeutic approach for many brain disorders, including neurodegenerative diseases like Alzheimer's disease. In addition, neuronal hematopoietic growth factor receptors provide novel targets for the discovery of peptide-mimetic drugs that can forestall or reverse the pathological progression of Alzheimer's disease

    Transcranial Electromagnetic Treatment Against Alzheimer\u27s Disease: Why it has the Potential to Trump Alzheimer\u27s Disease Drug Development

    No full text
    The universal failure of pharmacologic interventions against Alzheimer\u27s disease (AD) appears largely due to their inability to get into neurons and the fact that most have a single mechanism-of-action. A non-invasive, neuromodulatory approach against AD has consequently emerged: transcranial electromagnetic treatment (TEMT). In AD transgenic mice, long-term TEMT prevents and reverses both cognitive impairment and brain amyloid-β (Aβ) deposition, while TEMT even improves cognitive performance in normal mice. Three disease-modifying and inter-related mechanisms of TEMT action have been identified in the brain: 1) anti-Aβ aggregation, both intraneuronally and extracellularly; 2) mitochondrial enhancement; and 3) increased neuronal activity. Long-term TEMT appears safe in that it does not impact brain temperature or oxidative stress levels, nor does it induce any abnormal histologic/anatomic changes in the brain or peripheral tissues. Future TEMT development in both AD mice and normal mice should involve head-only treatment to discover the most efficacious set of parameters for achieving faster and even greater cognitive benefit. Given the already extensive animal work completed, translational development of TEMT could occur relatively quickly to “proof of concept” AD clinical trials. TEMT\u27s mechanisms of action provide extraordinary therapeutic potential against other neurologic disorders/injuries, such as Parkinson\u27s disease, traumatic brain injury, and stroke

    Transcranial Electromagnetic Treatment Against Alzheimer's Disease: Why it has the Potential to Trump Alzheimer's Disease Drug Development

    No full text
    The universal failure of pharmacologic interventions against Alzheimer\u27s disease (AD) appears largely due to their inability to get into neurons and the fact that most have a single mechanism-of-action. A non-invasive, neuromodulatory approach against AD has consequently emerged: transcranial electromagnetic treatment (TEMT). In AD transgenic mice, long-term TEMT prevents and reverses both cognitive impairment and brain amyloid-β (Aβ) deposition, while TEMT even improves cognitive performance in normal mice. Three disease-modifying and inter-related mechanisms of TEMT action have been identified in the brain: 1) anti-Aβ aggregation, both intraneuronally and extracellularly; 2) mitochondrial enhancement; and 3) increased neuronal activity. Long-term TEMT appears safe in that it does not impact brain temperature or oxidative stress levels, nor does it induce any abnormal histologic/anatomic changes in the brain or peripheral tissues. Future TEMT development in both AD mice and normal mice should involve head-only treatment to discover the most efficacious set of parameters for achieving faster and even greater cognitive benefit. Given the already extensive animal work completed, translational development of TEMT could occur relatively quickly to “proof of concept” AD clinical trials. TEMT\u27s mechanisms of action provide extraordinary therapeutic potential against other neurologic disorders/injuries, such as Parkinson\u27s disease, traumatic brain injury, and stroke

    Transgenic animal and methods

    Get PDF
    A transgenic animal, preferably a mouse, that expresses human antichymotrypsin (ACT) in brain tissues is provided, together with animal tissue-derived cell lines and progeny animals of said transgenic animal. Progeny are obtained by mating the transgeny animal with select animal strains used as models of Alzheimer\u27s disease, related neurological disorders, or amyloidogenic diseases. Methods utilizing the parent and progeny animals and cells derived therefrom are disclosed for testing compounds for use as anti-inflammatory drugs, inhibitors of amyloidogenesis, and/or inhibitors of tau protein pathology associated with Alzheimer\u27s disease, in the treatment of a variety of neurological diseases

    Prevention and treatment of brain diseases and disorders related to abnormal protein aggregation through electromagnetic field treatment

    Get PDF
    A method of treating and preventing a neurological disorder, such as Alzheimer\u27s disease, in a subject in need thereof by positioning an electromagnetic field emitting source proximal to the subject and exposing the subject to an electromagnetic field having a predetermined frequency (preferably â300-3,000 MHz) for a predetermined absorption period (preferably greater than â3 days). Each individual treatment (comprising exposure to the predetermined frequency for the predetermined absorption period) is continued at a predetermined schedule for a predetermined treatment period. The EMF can have a specific absorption rate up to about 8 W/kg. The methodology enhances cognition in the subject and/or treats/prevents the underlying neurological disorder or a symptom thereof

    Animal Models of Alzheimer\u27s Disease

    No full text

    Prevention and Treatment of Alzheimer\u27s Disease Through Electromagnetic Field Exposure

    Get PDF
    The invention includes a method of treating and preventing a neurological disorder, such as Alzheimer\u27s Disease, in a subject in need thereof by positioning an electromagnetic field emitting source proximal to the subject and exposing the subject to an electromagnetic field having a predetermined frequency for a predetermined absorption period. Preferably, each individual treatment (comprising exposure to the predetermined frequency for the predetermined absorption period) is continued at a predetermined schedule (preferably daily) for a predetermined treatment period. The predetermined frequency, according to a preferred embodiment, is about 918 MHz with a specific absorption rate (SAR) of about 0.25 W/kg+/-2 dB. The predetermined absorption period of this preferred embodiment is about one hour. The treatment period is long-term, being greater than about 6 months and preferably between about 7 and 9 months
    corecore