5 research outputs found

    Flux of Total Mercury and Methylmercury to the Northern Gulf of Mexico from U.S. Estuaries

    No full text
    To better understand the source of elevated methylmercury (MeHg) concentrations in Gulf of Mexico (GOM) fish, we quantified fluxes of total Hg and MeHg from 11 rivers in the southeastern United States, including the 10 largest rivers discharging to the GOM. Filtered water and suspended particles were collected across estuarine salinity gradients in Spring and Fall 2012 to estimate fluxes from rivers to estuaries and from estuaries to coastal waters. Fluxes of total Hg and MeHg from rivers to estuaries varied as much as 100-fold among rivers. The Mississippi River accounted for 59% of the total Hg flux and 49% of the fluvial MeHg flux into GOM estuaries. While some estuaries were sources of Hg, the combined estimated fluxes of total Hg (∼5200 mol y<sup>–1</sup>) and MeHg (∼120 mol y<sup>–1</sup>) from the estuaries to the GOM were less than those from rivers to estuaries, suggesting an overall estuarine sink. Fluxes of total Hg from the estuaries to coastal waters of the northern GOM are approximately an order of magnitude less than from atmospheric deposition. However, fluxes from rivers are significant sources of MeHg to estuaries and coastal regions of the northern GOM

    Nanostructured Metal Oxide Sorbents for the Collection and Recovery of Uranium from Seawater

    No full text
    The ability to collect uranium from seawater offers the potential for a long-term green fuel supply for nuclear energy. However, extraction of uranium, and other trace minerals, is challenging because of the high ionic strength and low mineral concentrations in seawater. Herein we evaluate the use of nanostructured metal oxide sorbents for the collection and recovery of uranium from seawater. Chemical affinity, chemical adsorption capacity, and uptake kinetics of sorbent materials were evaluated. Materials with higher surface area clearly produced better sorbent performance. Uptake kinetics showed that the materials could rapidly equilibrate in a few hours with effective solution contact. Manganese, iron oxide, and especially Mn–Fe nanostructured composites provided the best performance for uranium collection from seawater. The preferred materials were demonstrated to extract uranium from natural seawater with up to 3 mg U/g-sorbent in 4 h of contact time. Inexpensive nontoxic carbonate solutions were demonstrated to be an effective and environmentally benign method of stripping the uranium from the metal oxide sorbents. Various formats for the utilization of the nanostructured metals oxide sorbent materials are discussed, including traditional methods and nontraditional methods such as magnetic separation

    Pyrogenic Inputs of Anthropogenic Pb and Hg to Sediments of the Hood Canal, Washington, in the 20th Century: Source Evidence from Stable Pb Isotopes and PAH Signatures

    No full text
    Combustion-derived PAHs and stable Pb isotopic signatures (<sup>206</sup>Pb/<sup>207</sup>Pb) in sedimentary records assisted in reconstructing the sources of atmospheric inputs of anthropogenic Pb and Hg to the Hood Canal, Washington. The sediment-focusing corrected peak fluxes of total Pb and Hg (1960–70s) demonstrate that the watershed of Hood Canal has received greater atmospheric inputs of these metals than its mostly rural land use would predict. The tight relationships between the Pb, Hg, and organic markers in the cores indicate that these metals are derived from industrial combustion emissions. Multiple lines of evidence point to the Asarco smelter, located in the Main Basin of Puget Sound, as the major emission source of these metals to the watershed of the Hood Canal. The evidence includes (1) similar PAH isomer ratios in sediment cores from the two basins, (2) the correlations between Pb, Hg, and Cu in sediments and previously studied environmental samples including particulate matter emitted from the Asarco smelter’s main stack at the peak of production, and (3) Pb isotope ratios. The natural rate of recovery in Hood Canal since the 1970s, back to preindustrial metal concentrations, was linear and contrasts with recovery rates reported for the Main Basin which slowed post late 1980s

    Elution of Uranium and Transition Metals from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    No full text
    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na<sub>2</sub>CO<sub>3</sub>–H<sub>2</sub>O<sub>2</sub> and hydrochloric acid elution methods can remove ∼95% of the uranium sequestered by the adsorbent after 42 days of exposure in real seawater. The Na<sub>2</sub>CO<sub>3</sub>–H<sub>2</sub>O<sub>2</sub> elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium­(V) and amidoxime is also discussed based on our <sup>51</sup>V NMR data

    Investigations into the Reusability of Amidoxime-Based Polymeric Adsorbents for Seawater Uranium Extraction

    No full text
    The ability to reuse amidoxime-based polymeric adsorbents is a critical component in reducing the overall cost of the technology to extract uranium from seawater. This report describes an evaluation of adsorbent reusability in multiple reuse (adsorption/stripping) cycles in real seawater exposures with potassium bicarbonate (KHCO<sub>3</sub>) elution using several amidoxime-based polymeric adsorbents. The KHCO<sub>3</sub> elution technique achieved ∼100% recovery of uranium adsorption capacity in the first reuse. Subsequent reuses showed significant drops in adsorption capacity. After the fourth reuse with the ORNL AI8 adsorbent, the 56-day adsorption capacity dropped to 28% of its original capacity. FTIR spectra revealed that there was a conversion of the amidoxime ligands to carboxylate groups during extended seawater exposure, becoming more significant with longer exposure times. Ca and Mg adsorption capacities also increased with each reuse cycle supporting the hypothesis that long-term exposure resulted in converting amidoxime to carboxylate, enhancing the adsorption of Ca and Mg. Shorter seawater exposure (adsorption/stripping) cycles (28 vs 42 days) had higher adsorption capacities after reuse, but the shorter exposure cycle time did not produce an overall better performance in terms of cumulative exposure time. Recovery of uranium capacity in reuses may also vary across different adsorbent formulations. Through multiple reuses, the AI8 adsorbent can harvest 10 g uranium/kg adsorbent in ∼140 days, using a 28-day adsorption/stripping cycle, a performance much better than would be achieved with a single use of the adsorbent through a very long-term exposure (saturation capacity of 7.4 g U/kg adsorbent). A time dependent seawater exposure model to evaluate the cost associated with reusing amidoxime-based adsorbents in real seawater exposures was developed. The predicted cost to extract uranium from seawater ranged from 610/kgUto610/kg U to 830/kg U. Model simulation suggests that a short seawater exposure cycle (<15 days) is the optimal deployment period for lower uranium production cost in seawater uranium mining
    corecore