59 research outputs found

    Sustained Na<sup>+</sup>/H<sup>+</sup> exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation

    Get PDF
    Hypoxia ischemia (HI)-related brain injury is the major cause of long-term morbidity in neonates. One characteristic hallmark of neonatal HI is the development of reactive astrogliosis in the hippocampus. However, the impact of reactive astrogliosis in hippocampal damage after neonatal HI is not fully understood. In the current study, we investigated the role of Na +/H+ exchanger isoform 1 (NHE1) protein in mouse reactive hippocampal astrocyte function in an in vitro ischemia model (oxygen/glucose deprivation and reoxygenation, OGD/REOX). 2 h OGD significantly increased NHE1 protein expression and NHE1-mediated H+ efflux in hippocampal astrocytes. NHE1 activity remained stimulated during 1-5 h REOX and returned to the basal level at 24 h REOX. NHE1 activation in hippocampal astrocytes resulted in intracellular Na+ and Ca2+ overload. The latter was mediated by reversal of Na+/Ca2+ exchange. Hippocampal astrocytes also exhibited a robust release of gliotransmitters (glutamate and pro-inflammatory cytokines IL-6 and TNFα) during 1-24 h REOX. Interestingly, inhibition of NHE1 activity with its potent inhibitor HOE 642 not only reduced Na+ overload but also gliotransmitter release from hippocampal astrocytes. The noncompetitive excitatory amino acid transporter inhibitor TBOA showed a similar effect on blocking the glutamate release. Taken together, we concluded that NHE1 plays an essential role in maintaining H + homeostasis in hippocampal astrocytes. Over-stimulation of NHE1 activity following in vitro ischemia disrupts Na+ and Ca2+ homeostasis, which reduces Na+-dependent glutamate uptake and promotes release of glutamate and cytokines from reactive astrocytes. Therefore, blocking sustained NHE1 activation in reactive astrocytes may provide neuroprotection following HI. © 2014 Cengiz et al

    Seed Regeneration Potential of Canopy Gaps at Early Formation Stage in Temperate Secondary Forests, Northeast China

    Get PDF
    Promoting the seed regeneration potential of secondary forests undergoing gap disturbances is an important approach for achieving forest restoration and sustainable management. Seedling recruitment from seed banks strongly determines the seed regeneration potential, but the process is poorly understood in the gaps of secondary forests. The objectives of the present study were to evaluate the effects of gap size, seed availability, and environmental conditions on the seed regeneration potential in temperate secondary forests. It was found that gap formation could favor the invasion of more varieties of species in seed banks, but it also could speed up the turnover rate of seed banks leading to lower seed densities. Seeds of the dominant species, Fraxinus rhynchophylla, were transient in soil and there was a minor and discontinuous contribution of the seed bank to its seedling emergence. For Quercus mongolica, emerging seedling number was positively correlated with seed density in gaps (R = 0.32, P<0.01), especially in medium and small gaps (<500 m2). Furthermore, under canopies, there was a positive correlation between seedling number and seed density of Acer mono (R = 0.43, P<0.01). Gap formation could promote seedling emergence of two gap-dependent species (i.e., Q. mongolica and A. mono), but the contribution of seed banks to seedlings was below 10% after gap creation. Soil moisture and temperature were the restrictive factors controlling the seedling emergence from seeds in gaps and under canopies, respectively. Thus, the regeneration potential from seed banks is limited after gap formation

    Seed polyphenols in a diverse tropical plant community

    No full text
    1. Polyphenols are one of the most common groups of secondary metabolites in plants and thought to play a key role in enhancing plant fitness by protecting plants against enemies. Although enemy-inflicted mortality at the seed stage can be an important regulator of plant populations and a key determinant of community structure, few studies have assessed community-level patterns of polyphenol content in seeds. 2. We describe the distribution of the main seed polyphenol groups across 196 tree and liana species on Barro Colorado Island (Panama) and community-level patterns in two aspects of their biological activity (protein precipitation and oxidative capacity). Taking advantage of substantial variation in morphological and ecological traits in the studied plant community, we test for correlations and trade-offs between seed polyphenols and non-chemical plant traits hypothesised to make plant species more or less likely to invest in polyphenol production. 3. The majority of species have polyphenols in their seeds. The incidence and concentrations of polyphenols were related to a set of non-chemical plant traits. Polyphenols were most likely to be present (and where present, to be expressed in high concentrations) in species with large seeds, short seed dormancy times, low investment in mechanical seed defences, high wood density, high leaf mass per area, tough leaves, and slow growth rates. 4. Synthesis: Our study reveals a potential trade-off between chemical and mechanical seed defences and shows that plant species that invest in physical defences at later life stages (high wood density and tough leaves) tend not to invest in physical defences of seeds but instead produce secondary metabolites likely to act as seed defences. Overall, our results conform to predictions from the resource availability hypothesis, which states that species in resource-limited environments (such as slow-growing shade-tolerant tree species) will invest more in defences than fast-growing pioneer species
    corecore