14 research outputs found

    Collagen Mimetic Dendrimers

    No full text

    S-Acyl-2-Thioethyl: A Convenient Base-Labile Protecting Group for the Synthesis of siRNAs Containing 5′-Vinylphosphonate

    No full text
    We recently reported that (E)-5′-vinylphosphonate (5′-VP) is a metabolically-stable phosphate mimic for siRNA and demonstrated that 5′-VP improves the potency of the fully modified siRNAs in vivo. Here, we report an alternative synthesis of 5′-VP modified guide strand using S-pivaloyl-2-thioethyl (tBu-SATE) protecting group. The tBu-SATE group is readily removed during the final cleavage of the oligonucleotide from the solid support and providing a more convenient route for the synthesis of siRNA guide strand carrying a 5′-vinylphosphonate

    Structural Analysis of Human Argonaute‑2 Bound to a Modified siRNA Guide

    No full text
    Incorporation of chemical modifications into small interfering RNAs (siRNAs) increases their metabolic stability and improves their tissue distribution. However, how these modifications impact interactions with Argonaute-2 (Ago2), the molecular target of siRNAs, is not known. Herein we present the crystal structure of human Ago2 bound to a metabolically stable siRNA containing extensive backbone modifications. Comparison to the structure of an equivalent unmodified-siRNA complex indicates that the structure of Ago2 is relatively unaffected by chemical modifications in the bound siRNA. In contrast, the modified siRNA appears to be much more plastic and shifts, relative to the unmodified siRNA, to optimize contacts with Ago2. Structure–activity analysis reveals that even major conformational perturbations in the 3′ half of the siRNA seed region have a relatively modest effect on knockdown potency. These findings provide an explanation for a variety of modification patterns tolerated in siRNAs and a structural basis for advancing therapeutic siRNA design

    Dose-dependent reduction of somatic expansions but not Htt aggregates by di-valent siRNA-mediated silencing of MSH3 in HdhQ111 mice

    No full text
    Abstract Huntington's disease (HD) is a progressive neurodegenerative disorder caused by CAG trinucleotide repeat expansions in exon 1 of the HTT gene. In addition to germline CAG expansions, somatic repeat expansions in neurons also contribute to HD pathogenesis. The DNA mismatch repair gene, MSH3, identified as a genetic modifier of HD onset and progression, promotes somatic CAG expansions, and thus presents a potential therapeutic target. However, what extent of MSH3 protein reduction is needed to attenuate somatic CAG expansions and elicit therapeutic benefits in HD disease models is less clear. In our study, we employed potent di-siRNAs to silence mouse Msh3 mRNA expression in a dose-dependent manner in HdhQ111/+ mice and correlated somatic Htt CAG instability with MSH3 protein levels from simultaneously isolated DNA and protein after siRNA treatment. Our results reveal a linear correlation with a proportionality constant of ~ 1 between the prevention of somatic Htt CAG expansions and MSH3 protein expression in vivo, supporting MSH3 as a rate-limiting step in somatic expansions. Intriguingly, despite a 75% reduction in MSH3 protein levels, striatal nuclear HTT aggregates remained unchanged. We also note that evidence for nuclear Msh3 mRNA that is inaccessible to RNA interference was found, and that MSH6 protein in the striatum was upregulated following MSH3 knockdown in HdhQ111/+ mice. These results provide important clues to address critical questions for the development of therapeutic molecules targeting MSH3 as a potential therapeutic target for HD

    Efficient Synthesis and Biological Evaluation of 5′-GalNAc Conjugated Antisense Oligonucleotides

    No full text
    Conjugation of triantennary <i>N</i>-acetyl galactosamine (GalNAc) to oligonucleotide therapeutics results in marked improvement in potency for reducing gene targets expressed in hepatocytes. In this report we describe a robust and efficient solution-phase conjugation strategy to attach triantennary GalNAc clusters (mol. wt. ∼2000) activated as PFP (pentafluorophenyl) esters onto 5′-hexylamino modified antisense oligonucleotides (5′-HA ASOs, mol. wt. ∼8000 Da). The conjugation reaction is efficient and was used to prepare GalNAc conjugated ASOs from milligram to multigram scale. The solution phase method avoids loading of GalNAc clusters onto solid-support for automated synthesis and will facilitate evaluation of GalNAc clusters for structure activity relationship (SAR) studies. Furthermore, we show that transfer of the GalNAc cluster from the 3′-end of an ASO to the 5′-end results in improved potency in cells and animals
    corecore