47 research outputs found

    Complete genome sequence and lifestyle of black-pigmented Corynebacterium aurimucosum ATCC 700975 (formerly C. nigricans CN-1) isolated from a vaginal swab of a woman with spontaneous abortion

    Get PDF
    Trost E, Götker S, Schneider J, et al. Complete genome sequence and lifestyle of black-pigmented Corynebacterium aurimucosum ATCC 700975 (formerly C. nigricans CN-1) isolated from a vaginal swab of a woman with spontaneous abortion. BMC Genomics. 2010;11(1): 91.Background Corynebacterium aurimucosum is a slightly yellowish, non-lipophilic, facultative anaerobic member of the genus Corynebacterium and predominantly isolated from human clinical specimens. Unusual black-pigmented variants of C. aurimucosum (originally named as C. nigricans) continue to be recovered from the female urogenital tract and they are associated with complications during pregnancy. C. aurimucosum ATCC 700975 (C. nigricans CN-1) was originally isolated from a vaginal swab of a 34-year-old woman who experienced a spontaneous abortion during month six of pregnancy. For a better understanding of the physiology and lifestyle of this potential urogenital pathogen, the complete genome sequence of C. aurimucosum ATCC 700975 was determined. Results Sequencing and assembly of the C. aurimucosum ATCC 700975 genome yielded a circular chromosome of 2,790,189 bp in size and the 29,037-bp plasmid pET44827. Specific gene sets associated with the central metabolism of C. aurimucosum apparently provide enhanced metabolic flexibility and adaptability in aerobic, anaerobic and low-pH environments, including gene clusters for the uptake and degradation of aromatic amines, L-histidine and L-tartrate as well as a gene region for the formation of selenocysteine and its incorporation into formate dehydrogenase. Plasmid pET44827 codes for a non-ribosomal peptide synthetase that plays the pivotal role in the synthesis of the characteristic black pigment of C. aurimucosum ATCC 700975. Conclusions The data obtained by the genome project suggest that C. aurimucosum could be both a resident of the human gut and possibly a pathogen in the female genital tract causing complications during pregnancy. Since hitherto all black-pigmented C. aurimucosum strains have been recovered from female genital source, biosynthesis of the pigment is apparently required for colonization by protecting the bacterial cells against the high hydrogen peroxide concentration in the vaginal environment. The location of the corresponding genes on plasmid pET44827 explains why black-pigmented (formerly C. nigricans) and non-pigmented C. aurimucosum strains were isolated from clinical specimens

    Comparative and Joint Analysis of Two Metagenomic Datasets from a Biogas Fermenter Obtained by 454-Pyrosequencing

    Get PDF
    Biogas production from renewable resources is attracting increased attention as an alternative energy source due to the limited availability of traditional fossil fuels. Many countries are promoting the use of alternative energy sources for sustainable energy production. In this study, a metagenome from a production-scale biogas fermenter was analysed employing Roche's GS FLX Titanium technology and compared to a previous dataset obtained from the same community DNA sample that was sequenced on the GS FLX platform. Taxonomic profiling based on 16S rRNA-specific sequences and an Environmental Gene Tag (EGT) analysis employing CARMA demonstrated that both approaches benefit from the longer read lengths obtained on the Titanium platform. Results confirmed Clostridia as the most prevalent taxonomic class, whereas species of the order Methanomicrobiales are dominant among methanogenic Archaea. However, the analyses also identified additional taxa that were missed by the previous study, including members of the genera Streptococcus, Acetivibrio, Garciella, Tissierella, and Gelria, which might also play a role in the fermentation process leading to the formation of methane. Taking advantage of the CARMA feature to correlate taxonomic information of sequences with their assigned functions, it appeared that Firmicutes, followed by Bacteroidetes and Proteobacteria, dominate within the functional context of polysaccharide degradation whereas Methanomicrobiales represent the most abundant taxonomic group responsible for methane production. Clostridia is the most important class involved in the reductive CoA pathway (Wood-Ljungdahl pathway) that is characteristic for acetogenesis. Based on binning of 16S rRNA-specific sequences allocated to the dominant genus Methanoculleus, it could be shown that this genus is represented by several different species. Phylogenetic analysis of these sequences placed them in close proximity to the hydrogenotrophic methanogen Methanoculleus bourgensis. While rarefaction analyses still indicate incomplete coverage, examination of the GS FLX Titanium dataset resulted in the identification of additional genera and functional elements, providing a far more complete coverage of the community involved in anaerobic fermentative pathways leading to methane formation

    The Clavibacter michiganensis Subspecies: Molecular Investigation of Gram-Positive Bacterial Plant Pathogens

    No full text
    Eichenlaub R, Gartemann K-H. The Clavibacter michiganensis Subspecies: Molecular Investigation of Gram-Positive Bacterial Plant Pathogens. Annu Rev Phytopathol. 2011;49(1):445-464

    A family of serine proteases of Clavibacter michiganensis subsp. michiganensis: chpC plays a role in colonization of the host plant tomato

    No full text
    Stork I, Gartemann K-H, Burger A, Eichenlaub R. A family of serine proteases of Clavibacter michiganensis subsp. michiganensis: chpC plays a role in colonization of the host plant tomato. Molecular Plant Pathology. 2008;9(5):599-608.Genes for seven putative serine proteases (ChpA-ChpG) belonging to the trypsin subfamily and homologous to the virulence factor pat-1 were identified on the chromosome of Clavibacter michiganensis subsp. michiganensis (Cmm) NCPPB382. All proteases have signal peptides indicating export of these proteins. Their putative function is suggested by two motifs and an aspartate residue typical for serine proteases. Furthermore, six cysteine residues are located at conserved positions. The genes are clustered in a chromosomal region of about 50 kb with a significantly lower G + C content than common for Cmm. The genes chpA, chpB and chpD are pseudogenes as they contain frame shifts and/or in-frame stop codons. The genes chpC and chpG were inactivated by the insertion of an antibiotic resistance cassette. The chpG mutant was not impaired in virulence. However, in planta the titre of the chpC mutant was drastically reduced and only weak disease symptoms were observed. Complementation of the chpC mutant by the wild-type allele restored full virulence. ChpC is the first chromosomal gene of Cmm identified so far that affects the interaction of the pathogen with the host plant

    Specific detection of p-chlorobenzoic acid by Escherichia coli bearing a plasmid-borne fcbA':: lux fusion

    No full text
    Rozen Y, Nejidat A, Gartemann K-H, Belkin S. Specific detection of p-chlorobenzoic acid by Escherichia coli bearing a plasmid-borne fcbA':: lux fusion. CHEMOSPHERE. 1999;38(3):633-641.In this communication we report on a genetically engineered bacterium that reacts by light emission to the presence of 4-chlorobenzoic acid. To construct this strain, DNA fragment (1.7 kb) upstream from the 4-chlorobenzoic acid dehalogenase (fcb) operon of Arthrobacter SU was fused to Vibrio fischeri luxCDABE genes. An Escherichia coli strain transformed with a multi-copy plasmid (pASU) bearing this fusion responded to the presence of 4-chlorobenzoic acid and a few closely related compounds by increased luminescence, exhibiting a high specificity but a relatively low sensitivity. While it could be somewhat, improved by manipulating the experimental pH, sensitivity remained too low for real time applicability. Nevertheless, the principle of using dehalogenase promoters as environmental pollution sensor was demonstrated. (C) 1998 Elsevier Science Ltd. All rights reserved

    Analysis of the interaction of Clavibacter michiganensis subsp michiganensis with its host plant tomato by genome-wide expression profiling

    No full text
    Flügel M, Becker A, Gartemann K-H, Eichenlaub R. Analysis of the interaction of Clavibacter michiganensis subsp michiganensis with its host plant tomato by genome-wide expression profiling. Journal of Biotechnology. 2012;160(1-2):42-54.Genome-wide expression profiles of the phytopathogenic actinomycete Clavibacter michiganensis subsp. michiganensis (Cmm) strain NCPPB382 were analyzed using a 70mer oligonucleotide microarray. Cmm causes bacterial wilt and canker of tomato, a systemic disease leading to substantial economic losses worldwide. Global gene expression was monitored in vitro after long-and short-term incubation with tomato homogenate to simulate conditions in planta and in vivo ten days after inoculation of tomatoes. Surprisingly, both in the presence of tomato homogenate and in planta known virulence genes (celA, chpC, ppaA/C) were down-regulated indicating that the encoded extracellular enzymes are dispensable in late infection stages where plant tissue has already been heavily destroyed. In contrast, some genes of the tomA-region which are involved in sugar metabolism showed an enhanced RNA-level after permanent growth in supplemented medium. Therefore, these genes may be important for utilization of plant derived nutrients. In the plant Cmm exhibited an expression profile completely different from that in vitro. Especially, the strong expression of genes of the wco-cluster (extracellular polysaccharide II), 10 genes encoding surface or pilus assembly proteins, and CMM_2382, coding for a putative perforin suggest a possible role of these genes in the plant-pathogenic interaction. (C) 2012 Elsevier B.V. All rights reserved

    Characterization of the 4-Hydroxybenzoyl-Coenzyme A Thioesterase from Arthrobacter sp. Strain SU

    No full text
    The Arthrobacter sp. strain SU 4-chlorobenzoate (4-CBA) dehalogenation pathway converts 4-CBA to 4-hydroxybenzoate (4-HBA). The pathway operon contains the genes fcbA, fcbB, and fcbC (A. Schmitz, K. H. Gartemann, J. Fiedler, E. Grund, and R. Eichenlaub, Appl. Environ. Microbiol. 58:4068-4071, 1992). Genes fcbA and fcbB encode 4-CBA-coenzyme A (CoA) ligase and 4-CBA-CoA dehalogenase, respectively, whereas the function of fcbC is not known. We subcloned fcbC and expressed it in Escherichia coli, and we purified and characterized the FcbC protein. A substrate activity screen identified benzoyl-CoA thioesters as the most active substrates. Catalysis of 4-HBA-CoA hydrolysis to 4-HBA and CoA occurred with a k(cat) of 6.7 s(−1) and a K(m) of 1.2 μM. The k(cat) pH rate profile for 4-HBA-CoA hydrolysis indicated optimal activity over a pH range of 6 to 10. The amino acid sequence of the FcbC protein was compared to other sequences contained in the protein sequence data banks. A large number of sequence homologues of unknown function were identified. On the other hand, the 4-HBA-CoA thioesterases isolated from 4-CBA-degrading Pseudomonas strains did not share significant sequence identity with the FcbC protein, indicating early divergence of the thioesterase-encoding genes

    Aerobic degradation of 4-chlorobenzoate: The 4-chlorobenzoate dehalogenase operon is duplicated and associated with a transport protein and insertion elements in Arthrobacter spp.

    No full text
    Schmitz A, Fiedler J, Eichenlaub R, Gartemann K-H. Aerobic degradation of 4-chlorobenzoate: The 4-chlorobenzoate dehalogenase operon is duplicated and associated with a transport protein and insertion elements in Arthrobacter spp. In: Int. Symp. Environmental Biotechnology, Oostende, April 1997. 1997: 497-500
    corecore