62 research outputs found

    Author Correction: A HML6 endogenous retrovirus on chromosome 3 is upregulated in amyotrophic lateral sclerosis motor cortex

    Get PDF
    There is increasing evidence that endogenous retroviruses (ERVs) play a significant role in central nervous system diseases, including amyotrophic lateral sclerosis (ALS). Studies of ALS have consistently identified retroviral enzyme reverse transcriptase activity in patients. Evidence indicates that ERVs are the cause of reverse transcriptase activity in ALS, but it is currently unclear whether this is due to a specific ERV locus or a family of ERVs. We employed a combination of bioinformatic methods to identify whether specific ERVs or ERV families are associated with ALS. Using the largest post-mortem RNA-sequence datasets available we selectively identified ERVs that closely resembled full-length proviruses. In the discovery dataset there was one ERV locus (HML6_3p21.31c) that showed significant increased expression in post-mortem motor cortex tissue after multiple-testing correction. Using six replication post-mortem datasets we found HML6_3p21.31c was consistently upregulated in ALS in motor cortex and cerebellum tissue. In addition, HML6_3p21.31c showed significant co-expression with cytokine binding and genes involved in EBV, HTLV-1 and HIV type-1 infections. There were no significant differences in ERV family expression between ALS and controls. Our results support the hypothesis that specific ERV loci are involved in ALS pathology

    A HML6 endogenous retrovirus on chromosome 3 is upregulated in amyotrophic lateral sclerosis motor cortex.

    Get PDF
    There is increasing evidence that endogenous retroviruses (ERVs) play a significant role in central nervous system diseases, including amyotrophic lateral sclerosis (ALS). Studies of ALS have consistently identified retroviral enzyme reverse transcriptase activity in patients. Evidence indicates that ERVs are the cause of reverse transcriptase activity in ALS, but it is currently unclear whether this is due to a specific ERV locus or a family of ERVs. We employed a combination of bioinformatic methods to identify whether specific ERVs or ERV families are associated with ALS. Using the largest post-mortem RNA-sequence datasets available we selectively identified ERVs that closely resembled full-length proviruses. In the discovery dataset there was one ERV locus (HML6_3p21.31c) that showed significant increased expression in post-mortem motor cortex tissue after multiple-testing correction. Using six replication post-mortem datasets we found HML6_3p21.31c was consistently upregulated in ALS in motor cortex and cerebellum tissue. In addition, HML6_3p21.31c showed significant co-expression with cytokine binding and genes involved in EBV, HTLV-1 and HIV type-1 infections. There were no significant differences in ERV family expression between ALS and controls. Our results support the hypothesis that specific ERV loci are involved in ALS pathology

    Quantitative analysis of Human Endogenous Retrovirus-K transcripts in postmortem premotor cortex fails to confirm elevated expression of HERV-K RNA in amyotrophic lateral sclerosis

    Get PDF
    Over the past two decades a number of studies have demonstrated activity of the retroviral enzyme reverse transcriptase in the serum of patients with sporadic amyotrophic lateral sclerosis (ALS). Known human exogenous retroviruses such as HIV-1 have been eliminated as possible sources of this activity and investigators have therefore considered the possibility that human endogenous retroviruses (HERVs) might be involved. HERV-K (HML-2) is the most recent retroviral candidate to be proposed following the observation of elevated HERV-K expression in cortical and spinal neurons of ALS patients and the demonstration of HERV-K envelope protein neurotoxicity in vitro and in transgenic mice. This retroviral hypothesis is an attractive one, not least because it raises the possibility that ALS might become treatable using antiretroviral drugs. In the present study we have attempted independent confirmation of the observation that HERV-K RNA levels are elevated in ALS brain. Total RNA was extracted from the postmortem premotor cortex of 34 patients with ALS and 23 controls. Quantitative real-time reverse transcription PCR (RT-qPCR) was performed according to the MIQE guidelines using HERV-K gag, pol and env primer sets. Data was analysed by the 2-∆∆Ct method with normalisation against two reference genes, GAPDH and XPNPEP1. Geometric mean HERV-K RNA expression levels in the premotor cortex of ALS patients were not found to be different from the expression levels in non-ALS controls. Our findings do not confirm the recently reported association between elevated cortical HERV-K RNA levels and ALS, and thus raise doubts about the role of this endogenous retrovirus in ALS pathogenesis. The results of this study may have implications for ongoing clinical trials aiming to suppress HERV-K activity with antiretroviral drugs

    Quantification of reverse transcriptase in ALS and elimination of a novel retroviral candidate

    No full text
    BACKGROUND: Retroviral involvement in amyotrophic lateral sclerosis (ALS) has been suspected for several years since the recognition that both murine and human retroviruses can cause ALS-like syndromes. Nonquantitative studies have demonstrated the retroviral enzyme reverse transcriptase (RT) in ALS patients' sera, but the amount and source of RT activity are unknown. We therefore developed a quantitative assay to study RT levels in ALS and examined the possibility that the recently discovered human gammaretrovirus XMRV (xenotropic MuLV-related virus) might be the source of the RT activity. METHODS: A quantitative product-enhanced RT assay was used to measure RT activity levels in serum and CSF. XMRV sequences were sought by PCR analysis of DNA and RNA extracted from blood. RESULTS: Fifty percent of ALS patients' sera contained >6 x 10(-8) RT units/mL as opposed to 7% of control sera (p = 0.008). The levels of RT activity in ALS patients were comparable to the levels observed in patients infected with HIV. RT activity was detected in only 1 of 25 CSF samples tested. XMRV sequences were not found in any of 25 nucleic acid extracts obtained from ALS patients' blood. CONCLUSIONS: These findings further support the concept of retroviral involvement in amyotrophic lateral sclerosis (ALS) and demonstrate that serum is more suitable than CSF for assay of reverse transcriptase (RT) activity in this disease. The levels of serum RT activity detected are comparable to those found in HIV infection. XMRV is not detectable in the blood of ALS patients, and the agent responsible for ALS-associated RT activity therefore remains unidentified
    • …
    corecore