8 research outputs found

    Ubiquitous overexpression of the DNA repair factor dPrp19 reduces DNA damage and extends Drosophila life span.

    Get PDF
    Mechanisms that ensure and maintain the stability of genetic information are fundamentally important for organismal function and can have a large impact on disease, aging, and life span. While a multi-layered cellular apparatus exists to detect and respond to DNA damage, various insults from environmental and endogenous sources continuously affect DNA integrity. Over time this can lead to the accumulation of somatic mutations, which is thought to be one of the major causes of aging. We have previously found that overexpression of the essential human DNA repair and splicing factor SNEV, also called PRP19 or hPso4, extends replicative life span of cultured human endothelial cells and impedes accumulation of DNA damage. Here, we show that adult-specific overexpression of dPrp19, the D. melanogaster ortholog of human SNEV/PRP19/hPso4, robustly extends life span in female fruit flies. This increase in life span is accompanied by reduced levels of DNA damage and improved resistance to oxidative and genotoxic stress. Our findings suggest that dPrp19 plays an evolutionarily conserved role in aging, life span modulation and stress resistance, and support the notion that superior DNA maintenance is key to longevity

    Acceptance and potential impact of the ewall platform for health monitoring and promotion in persons with a chronic disease or age-related impairment

    Get PDF
    Pervasive health technologies can increase the effectiveness of personal health monitoring and training, but more user studies are necessary to understand the interest for these technologies, and how they should be designed and implemented. In the present study, we evaluated eWALL, a user-centered pervasive health technology consisting of a platform that monitors users’ physical and cognitive behavior, providing feedback and motivation via an easy-to-use, touch-based user interface. The eWALL was placed for one month in the home of 48 subjects with a chronic condition (chronic obstructive pulmonary disease—COPD or mild cognitive impairment—MCI) or with an age-related impairment. User acceptance, platform use, and potential clinical effects were evaluated using surveys, data logs, and clinical scales. Although some features of the platform need to be improved before reaching technical maturity and making a difference in patients’ lives, the real-life evaluation of eWALL has shown how some features may influence patients’ intention to use this promising technology. Furthermore, this study made it clear how the free use of different health apps is modulated by the real needs of the patient and by their usefulness in the context of the patient’s clinical status

    On the renormalization of non-commutative field theories

    No full text
    This paper addresses three topics concerning the quantization of non-commutative field theories (as defined in terms of the Moyal star product involving a constant tensor describing the non-commutativity of coordinates in Euclidean space). To start with, we discuss the Quantum Action Principle and provide evidence for its validity for non-commutative quantum field theories by showing that the equation of motion considered as insertion in the generating functional Z c [j] of connected Green functions makes sense (at least at one-loop level). Second, we consider the generalization of the BPHZ renormalization scheme to non-commutative field theories and apply it to the case of a self-interacting real scalar field: Explicit computations are performed at one-loop order and the generalization to higher loops is commented upon. Finally, we discuss the renormalizability of various models for a self-interacting complex scalar field by using the approach of algebraic renormalization

    Measuring User Experience in Conversational Interfaces: A Comparison of Six Questionnaires

    No full text

    Horizons in the evolution of aging

    No full text
    corecore