18 research outputs found

    In vivo biodistribution and lifetime analysis of cy5.5-conjugated rituximab in mice bearing lymphoid tumor xenograft using time-domain near-infrared optical imaging

    Get PDF
    Rituximab is a chimeric monoclonal antibody directed against human CD20 antigen, which is expressed on B-cell lymphocytes and on the majority of B-cell lymphoid malignancies. Herein we report the conjugate of rituximab with the near-infrared (NIR) fluorophore Cy5.5 (RI-Cy5.5) as a tool for in vitro, in vivo, and ex vivo NIR time-domain (TD) optical imaging. In vitro, RI-Cy5.5 retained biologic activity and led to elevated cell-associated fluorescence on tumor cells. In vivo, TD optical imaging analysis of RI-Cy5.5 injected into lymphoma-bearing mice revealed a slow tumor uptake and a specific long-lasting persistence of the probe within the tumor. Biodistribution studies after intraperitoneal and endovenous administration were undertaken to evaluate differences in the tumor uptake. RI-Cy5.5 concentration in the organs after intraperitoneal injection was not as high as after endovenous injection. Ex vivo analysis of biologic tissues and organs by both TD optical imaging and immunohistochemistry confirmed the probe distribution, as demonstrated by imaging experiment in vivo, showing that RI-Cy5.5 selectively accumulated in the tumor tissue and major excretion organs. In summary, the study indicates that NIR TD optical imaging is a powerful tool for rituximab-targeting investigation, furthering understanding of its administration outcome in lymphoma treatment

    Bispecific antibodies targeting tumor-associated antigens and neutralizing complement regulators increase the efficacy of antibody-based immunotherapy in mice.

    Get PDF
    The efficacy of antibody-based immunotherapy is due to the activation of apoptosis, the engagement of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity (CDC). We developed a novel strategy to enhance CDC using bispecific antibodies (bsAbs) that neutralize the C-regulators CD55 and CD59 to enhance C-mediated functions. Two bsAbs (MB20/55 and MB20/59) were designed to recognize CD20 on one side. The other side neutralizes CD55 or CD59. Analysis of CDC revealed that bsAbs could kill 4 to 25 times more cells than anti-CD20 recombinant antibody in cell lines or cells isolated from patients with chronic lymphocytic leukemia. The pharmacokinetics of the bsAbs was evaluated in a human-SCID model of Burkitt lymphoma. The distribution profile of bsAbs mimics the data obtained by studying the pharmacokinetics of anti-CD20 antibodies, showing a peak in the tumor mass 3-4 days after injection. The treatment with bsAbs completely prevented the development of human/SCID lymphoma. The tumor growth was blocked by the activation of the C cascade and by the recruitment of macrophages, PMN and NK cells. This strategy can easily be applied to the other anti-tumor C-fixing antibodies currently used in the clinic or tested in preclinical studies using the same vector with the appropriate modifications

    Intranasal Administration of Recombinant TRAIL Down-Regulates CXCL-1/KC in an Ovalbumin-Induced Airway Inflammation Murine Model

    Get PDF
    Ovalbumin (OVA)-sensitized BALB/c mice were i.n. instilled with recombinant TNF-related apoptosis inducing ligand (TRAIL) 24 hours before OVA challenge. The total number of leukocytes and the levels of the chemokine CXCL-1/KC significantly increased in the bronchoalveolar lavage (BAL) fluids of allergic animals with respect to control littermates, but not in the BAL of mice i.n. pretreated with recombinant TRAIL before OVA challenge. In particular, TRAIL pretreatment significantly reduced the BAL percentage of both eosinophils and neutrophils. On the other hand, when TRAIL was administrated simultaneously to OVA challenge its effect on BAL infiltration was attenuated. Overall, the results show that the i.n. pretreatment with TRAIL down-modulated allergic airway inflammation

    NMDA Receptor and L-Type Calcium Channel Modulate Prion Formation

    Get PDF
    Transmissible neurodegenerative prion diseases are characterized by the conversion of the cellular prion protein (PrPC) to misfolded isoforms denoted as prions or PrPSc. Although the conversion can occur in the test tube containing recombinant prion protein or cell lysates, efficient prion formation depends on the integrity of intact cell functions. Since neurons are main targets for prion replication, we asked whether their most specialized function, i.e. synaptic plasticity, could be a factor by which PrPSc formation can be modulated. Immortalized gonadotropin-releasing hormone cells infected with the Rocky Mountain Laboratory prion strain were treated with L-type calcium channels (LTCCs) and NMDA receptors (NMDARs) stimulators or inhibitors. Western blotting was used to monitor the effects on PrPSc formation in relation to ERK signalling. Infected cells showed enhanced levels of phosphorylated ERK (pERK) compared with uninfected cells. Exposure of infected cells to the LTCC agonist Bay K8644 enhanced pERK and PrPSc levels. Although treatment with an LTCC blocker (nimodipine) or an NMDAR competitive antagonist (D-AP5) had no effects, their combination reduced both pERK and PrPSc levels. Treatment with the non-competitive NMDAR channel blocker MK-801 markedly reduced pERK and PrPSc levels. Our study shows that changes in LTCCs and NMDARs activities can modulate PrPSc formation through ERK signalling. During synaptic plasticity, while ERK signalling promotes long-term potentiation accompanied by expansion of post-synaptic lipid rafts, other NMDA receptor-depending signalling pathways, p38-JNK, have opposing effects. Our findings indicate that contrasting intracellular signals of synaptic plasticity can influence time-dependent prion conversion

    Multiple dye-doped NIR-emitting silica nanoparticles for both flow cytometry and in vivo imaging

    No full text
    Dye-doped near infrared-emitting silica nanoparticles (DD-NIRsiNPs)represent a valuable tool in bioimaging, because they provide sufficient brightness, resistance to photobleaching and consist of hydrophilic non-toxic materials. Here, we report the development of multiple dye-doped NIR emitting siNPs (mDD-NIRsiNPs), based on silica-PEG core-shell nanostructures doped with a donor-acceptor couple, exhibiting a tunable intensity profile across the NIR spectrum and suitable for both multiparametric flow cytometry analyses and time-domain optical imaging. In order to characterize the optical properties and fluorescence applications of the mDD-NIRsiNPs, we have characterized their performance by analyzing their in vivo biodistribution in healthy mice as well as in lymphoma bearing xenografts, and their suitability as contrast imaging agents for cell labeling and tracking. The mDD-NIRsiNPs features will be useful in designing new applications for imaging agents based on silica nanoparticles for different experimental disease models

    Targeted tumor imaging of anti-CD20-polymeric nanoparticles developed for the diagnosis of B-cell malignancies

    No full text
    Sara Capolla,1 Chiara Garrovo,2 Sonia Zorzet,1 Andrea Lorenzon,3 Enrico Rampazzo,4 Ruben Spretz,5 Gabriele Pozzato,6 Luis Núñez,7 Claudio Tripodo,8 Paolo Macor,1,9 Stefania Biffi2 1Department of Life Sciences, University of Trieste, 2Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, 3Animal Care Unit, Cluster in Biomedicine (CBM scrl), Trieste, Italy; 4Department of Chemistry “G. Ciamician”, University of Bologna, Bologna, Italy; 5LNK Chemsolutions LLC, Lincoln, NE, USA; 6Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy; 7Bio-Target, Inc., University of Chicago, Chicago, IL, USA; 8Department of Human Pathology, University of Palermo, Palermo, Italy; 9Callerio Foundation Onlus, Institutes of Biological Researches, Trieste, Italy Abstract: The expectations of nanoparticle (NP)-based targeted drug delivery systems in cancer, when compared with convectional therapeutic methods, are greater efficacy and reduced drug side effects due to specific cellular-level interactions. However, there are conflicting literature reports on enhanced tumor accumulation of targeted NPs, which is essential for translating their applications as improved drug-delivery systems and contrast agents in cancer imaging. In this study, we characterized biodegradable NPs conjugated with an anti-CD20 antibody for in vivo imaging and drug delivery onto tumor cells. NPs’ binding specificity mediated by anti-CD20 antibody was evaluated on MEC1 cells and chronic lymphocytic leukemia patients’ cells. The whole-body distribution of untargeted NPs and anti-CD20 NPs were compared by time-domain optical imaging in a localized human/mouse model of B-cell malignancy. These studies provided evidence that NPs’ functionalization by an anti-CD20 antibody improves tumor pharmacokinetic profiles in vivo after systemic administration and increases in vivo imaging of tumor mass compared to non-targeted NPs. Together, drug delivery and imaging probe represents a promising theranostics tool for targeting B-cell malignancies. Keywords: active targeting, optical imaging, tumor accumulatio

    Multiple dye-doped NIR-emitting silica nanoparticles for both flow cytometry and in vivo imaging

    No full text
    Dye-doped near infrared-emitting silica nanoparticles (DD-NIRsiNPs) represent a valuable tool in bioimaging, because they provide sufficient brightness, resistance to photobleaching and consist of hydrophilic non-toxic materials. Here, we report the development of multiple dye-doped NIR emitting siNPs (mDD-NIRsiNPs), based on silica-PEG core-shell nanostructures doped with a donor-acceptor couple, exhibiting a tunable intensity profile across the NIR spectrum and suitable for both multiparametric flow cytometry analyses and time-domain optical imaging. In order to characterize the optical properties and fluorescence applications of the mDD-NIRsiNPs, we have characterized their performance by analyzing their in vivo biodistribution in healthy mice as well as in lymphoma bearing xenografts, and their suitability as contrast imaging agents for cell labeling and tracking. The mDD-NIRsiNPs features will be useful in designing new applications for imaging agents based on silica nanoparticles for different experimental disease models. © 2014 The Partner Organisations
    corecore