681 research outputs found

    Probing substrate binding to Metallo-β-Lactamase L1 from Stenotrophomonas maltophilia by using site-directed mutagenesis

    Get PDF
    BACKGROUND: The metallo-β-lactamases are Zn(II)-containing enzymes that hydrolyze the β-lactam bond in penicillins, cephalosporins, and carbapenems and are involved in bacterial antibiotic resistance. There are at least 20 distinct organisms that produce a metallo-β-lactamase, and these enzymes have been extensively studied using X-ray crystallographic, computational, kinetic, and inhibition studies; however, much is still unknown about how substrates bind and the catalytic mechanism. In an effort to probe substrate binding to metallo-β-lactamase L1 from Stenotrophomonas maltophilia, nine site-directed mutants of L1 were prepared and characterized using metal analyses, CD spectroscopy, and pre-steady state and steady state kinetics. RESULTS: Site-directed mutations were generated of amino acids previously predicted to be important in substrate binding. Steady-state kinetic studies using the mutant enzymes and 9 different substrates demonstrated varying K(m) and k(cat) values for the different enzymes and substrates and that no direct correlation between K(m) and the effect of the mutation on substrate binding could be drawn. Stopped-flow fluorescence studies using nitrocefin as the substrate showed that only the S224D and Y228A mutants exhibited weaker nitrocefin binding. CONCLUSIONS: The data presented herein indicate that Ser224, Ile164, Phe158, Tyr228, and Asn233 are not essential for tight binding of substrate to metallo-β-lactamase L1. The results in this work also show that K(m) values are not reliable for showing substrate binding, and there is no correlation between substrate binding and the amount of reaction intermediate formed during the reaction. This work represents the first experimental testing of one of the computational models of the metallo-β-lactamases

    The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis

    Get PDF
    The Ribosomal Database Project (RDP-II) provides the research community with aligned and annotated rRNA gene sequences, along with analysis services and a phylogenetically consistent taxonomic framework for these data. Updated monthly, these services are made available through the RDP-II website (http://rdp.cme.msu.edu/). RDP-II release 9.21 (August 2004) contains 101 632 bacterial small subunit rRNA gene sequences in aligned and annotated format. High-throughput tools for initial taxonomic placement, identification of related sequences, probe and primer testing, data navigation and subalignment download are provided. The RDP-II email address for questions or comments is [email protected]

    Chapter: Landcare on the Poverty-Protection Interface in an Asian Watershed

    Get PDF
    Serious methodological and policy hurdles constrain effective natural resource management that alleviates poverty while protecting environmental services in tropical watersheds. We review the development of an approach to integrate biodiversity conservation and agroforestry development through the active involvement of communities and their local governments near the Kitanglad Range Natural Park in the Manupali watershed, central Mindanao, the Philippines. Agroforestry innovations were developed to suit the biophysical and socioeconomic conditions of the buffer zone. These included practices for tree farming, and conservation farming for annual cropping on slopes. Institutional innovations improved resource management, resulting in an effective social contract to protect the natural biodiversity o f the park. Fruit and timber tree production dramatically increased, re-establishing tree cover in the buffer zone. Natural vegetative contour strips were installed on several hundred sloping farms. Soil erosion and runoff declined, while the buffer strips increased maize yields by an average of 0.5 t/ha on hill-slope farms. The scientific knowledge base guided the development and implementation of a natural resource management plan for the municipality of Lantapan. A dynamic grassroots movement o f farmer-led Landcare groups evolved in the villages near the park boundary, which had significant impact on conservation in both the natural and managed ecosystems. Encroachment in the natural park was reduced 95% in three years. The local Landcare groups also restored stream corridor vegetation. This integrated approach has been recognized as a national model for local natural resource and watershed management in the Philippines. Currently, the collaborating institutions are evolving a negotiation support system to resolve the interactions between the three management domains: the park, the ancestral domain claim, and the municipalities. This integrated systems approach operated effectively with highly constrained funding, suggesting that commitment and impact may best be stimulated by a “drip-feed” approach rather than by large, externally funded efforts

    The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data

    Get PDF
    Substantial new features have been implemented at the Ribosomal Database Project in response to the increased importance of high-throughput rRNA sequence analysis in microbial ecology and related disciplines. The most important changes include quality analysis, including chimera detection, for all available rRNA sequences and the introduction of myRDP Space, a new web component designed to help researchers place their own data in context with the RDP's data. In addition, new video tutorials describe how to use RDP features. Details about RDP data and analytical functions can be found at the RDP-II website ()

    Spectroscopic and Mechanistic Studies of Heterodimetallic Forms of Metallo-β-lactamase NDM-1

    Get PDF
    In an effort to characterize the roles of each metal ion in metallo-β-lactamase NDM-1, heterodimetallic analogues (CoCo-, ZnCo-, and CoCd-) of the enzyme were generated and characterized. UV–vis, 1H NMR, EPR, and EXAFS spectroscopies were used to confirm the fidelity of the metal substitutions, including the presence of a homogeneous, heterodimetallic cluster, with a single-atom bridge. This marks the first preparation of a metallo-β-lactamase selectively substituted with a paramagnetic metal ion, Co(II), either in the Zn1 (CoCd-NDM-1) or in the Zn2 site (ZnCo-NDM-1), as well as both (CoCo-NDM-1). We then used these metal-substituted forms of the enzyme to probe the reaction mechanism, using steady-state and stopped-flow kinetics, stopped-flow fluorescence, and rapid-freeze-quench EPR. Both metal sites show significant effects on the kinetic constants, and both paramagnetic variants (CoCd- and ZnCo-NDM-1) showed significant structural changes on reaction with substrate. These changes are discussed in terms of a minimal kinetic mechanism that incorporates all of the data

    The Role of Genomics in the Identification, Prediction, and Prevention of Biological Threats

    Get PDF
    In all likelihood, it is only a matter of time before our public health system will face a major biological threat, whether intentionally dispersed or originating from a known or newly emerging infectious disease. It is necessary not only to increase our reactive “biodefense,” but also to be proactive and increase our preparedness. To achieve this goal, it is essential that the scientific and public health communities fully embrace the genomic revolution, and that novel bioinformatic and computing tools necessary to make great strides in our understanding of these novel and emerging threats be developed. Genomics has graduated from a specialized field of science to a research tool that soon will be routine in research laboratories and clinical settings. Because the technology is becoming more affordable, genomics can and should be used proactively to build our preparedness and responsiveness to biological threats. All pieces, including major continued funding, advances in next-generation sequencing technologies, bioinformatics infrastructures, and open access to data and metadata, are being set in place for genomics to play a central role in our public health system

    Does owning a pet protect older people against loneliness?

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Pet ownership is thought to make a positive contribution to health, health behaviours and the general well-being of older people. More specifically pet ownership is often proposed as a solution to the problem of loneliness in later life and specific 'pet based' interventions have been developed to combat loneliness. However the evidence to support this relationship is slim and it is assumed that pet ownership is a protection against loneliness rather than a response to loneliness. The aim of this paper is to examine the association between pet ownership and loneliness by exploring if pet ownership is a response to, or protection against, loneliness using Waves 0-5 from the English Longitudinal Study of Ageing (ELSA)

    A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila

    Get PDF
    Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens

    The Ribosomal Database Project: improved alignments and new tools for rRNA analysis

    Get PDF
    The Ribosomal Database Project (RDP) provides researchers with quality-controlled bacterial and archaeal small subunit rRNA alignments and analysis tools. An improved alignment strategy uses the Infernal secondary structure aware aligner to provide a more consistent higher quality alignment and faster processing of user sequences. Substantial new analysis features include a new Pyrosequencing Pipeline that provides tools to support analysis of ultra high-throughput rRNA sequencing data. This pipeline offers a collection of tools that automate the data processing and simplify the computationally intensive analysis of large sequencing libraries. In addition, a new Taxomatic visualization tool allows rapid visualization of taxonomic inconsistencies and suggests corrections, and a new class Assignment Generator provides instructors with a lesson plan and individualized teaching materials. Details about RDP data and analytical functions can be found at http://rdp.cme.msu.edu/
    corecore