105 research outputs found

    Tissue-specific expression from a compound TATA-dependent and TATA-independent promoter

    Get PDF
    We have found that the mouse metallothionein-I (MT-I) gene promoter functions in an unusual, compound manner. It directs both TATA-dependent and TATA-independent modes of transcription in vivo. The TATA-dependent message is initiated at the previously characterized +1 transcription start site and is the predominant species in most tissues. In many cell types it is metal inducible. The TATA-independent initiation sites are distributed over the 160 bp upstream of the previously characterized +1 start site, and the RNA products are present in all tissues examined. Only in testis, however, do the TATA-independent transcripts predominate, accumulating to highest levels in pachytene-stage meiotic cells and early spermatids. Unlike the TATA-dependent +1 transcript, these RNAs are not induced by metal, even in cultured cells in which the +1 species is induced. Transfection studies of site-directed mutants show that destruction of the TATA element drastically alters the ratio of the two RNA classes in cells in which the +1 transcripts normally dominates. In TATA-minus mutants, the TATA-independent RNAs become the most prevalent, although they remain refractory to metal induction. Thus, the MT-I promoter utilizes two different types of core promoter function within a single cell population. The two different types of core promoter respond very differently to environmental stimuli, and the choice between them appears to be regulated in a tissue-specific fashion

    Drosophila Photoreceptor Axon Guidance and Targeting Requires the Dreadlocks SH2/SH3 Adapter Protein

    Get PDF
    AbstractMutations in the Drosophila gene dreadlocks (dock) disrupt photoreceptor cell (R cell) axon guidance and targeting. Genetic mosaic analysis and cell-type-specific expression of dock transgenes demonstrate dock is required in R cells for proper innervation. Dock protein contains one SH2 and three SH3 domains, implicating it in tyrosine kinase signaling, and is highly related to the human proto-oncogene Nck. Dock expression is detected in R cell growth cones in the target region. We propose Dock transmits signals in the growth cone in response to guidance and targeting cues. These findings provide an important step for dissection of signaling pathways regulating growth cone motility

    Interleukin-2 transcription is regulated in vivo at the level of coordinated binding of both constitutive and regulated factors

    Get PDF
    Interleukin-2 (IL-2) transcription is developmentally restricted to T cells and physiologically dependent on specific stimuli such as antigen recognition. Prior studies have shown that this stringent two-tiered regulation is mediated through a transcriptional promoter/enhancer DNA segment which is composed of diverse recognition elements. Factors binding to some of these elements are present constitutively in many cell types, while others are signal dependent, T cell specific, or both. This raises several questions about the molecular mechanism by which IL-2 expression is regulated. Is the developmental commitment of T cells reflected molecularly by stable interaction between available factors and the IL-2 enhancer prior to signal-dependent induction? At which level, factor binding to DNA or factor activity once bound, are individual regulatory elements within the native enhancer regulated? By what mechanism is developmental and physiological specificity enforced, given the participation of many relatively nonspecific elements? To answer these questions, we have used in vivo footprinting to determine and compare patterns of protein-DNA interactions at the native IL-2 locus in cell environments, including EL4 T-lymphoma cells and 32D clone 5 premast cells, which express differing subsets of IL-2 DNA-binding factors. We also used the immunosuppressant cyclosporin A as a pharmacological agent to further dissect the roles played by cyclosporin A-sensitive factors in the assembly and maintenance of protein-DNA complexes. Occupancy of all site types was observed exclusively in T cells and then only upon excitation of signal transduction pathways. This was true even though partially overlapping subsets of IL-2-binding activities were shown to be present in 32D clone 5 premast cells. This observation was especially striking in 32D cells because, upon signal stimulation, they mobilized a substantial set of IL-2 DNA-binding activities, as measured by in vitro assays using nuclear extracts. We conclude that binding activities of all classes fail to stably occupy their cognate sites in IL-2, except following activation of T cells, and that specificity of IL-2 transcription is enforced at the level of chromosomal occupancy, which appears to be an all-or-nothing phenomenon

    The Drosophila SH2-SH3 adapter protein Dock is expressed in embryonic axons and facilitates synapse formation by the RP3 motoneuron

    Get PDF
    The Dock SH2-SH3 domain adapter protein, a homolog of the mammalian Nck oncoprotein, is required for axon guidance and target recognition by photoreceptor axons in Drosophila larvae. Here we show that Dock is widely expressed in neurons and at muscle attachment sites in the embryo, and that this expression pattern has both maternal and zygotic components. In motoneurons, Dock is concentrated in growth cones. Loss of zygotic dock function causes a selective delay in synapse formation by the RP3 motoneuron at the cleft between muscles 7 and 6. These muscles often completely lack innervation in late stage 16 dock mutant embryos. RP3 does form a synapse later in development, however, because muscles 7 and 6 are normally innervated in third-instar mutant larvae. The absence of zygotically expressed Dock also results in subtle defects in a longitudinal axon pathway in the embryonic central nervous system. Concomitant loss of both maternally and zygotically derived Dock dramatically enhances these central nervous system defects, but does not increase the delay in RP3 synaptogenesis. These results indicate that Dock facilitates synapse formation by the RP3 motoneuron and is also required for guidance of some interneuronal axons The involvement of Dock in the conversion of the RP3 growth cone into a presynaptic terminal may reflect a role for Dock-mediated signaling in remodeling of the growth cone's cytoskeleton

    Genomic encyclopedia of bacterial and archaeal type strains, phase III : the genomes of soil and plant-associated and newly described type strains

    Get PDF
    The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project to sequence about 250 bacterial and archaeal genomes of elevated phylogenetic diversity. Herein, we propose to extend this approach to type strains of prokaryotes associated with soil or plants and their close relatives as well as type strains from newly described species. Understanding the microbiology of soil and plants is critical to many DOE mission areas, such as biofuel production from biomass, biogeochemistry, and carbon cycling. We are also targeting type strains of novel species while they are being described. Since 2006, about 630 new species have been described per year, many of which are closely aligned to DOE areas of interest in soil, agriculture, degradation of pollutants, biofuel production, biogeochemical transformation, and biodiversity
    corecore