12,098 research outputs found

    Algorithms for identification and categorization

    Full text link
    The main features of a family of efficient algorithms for recognition and classification of complex patterns are briefly reviewed. They are inspired in the observation that fast synaptic noise is essential for some of the processing of information in the brain.Comment: 6 pages, 5 figure

    Spin dependent Momentum Distributions in Deformed Nuclei

    Get PDF
    We study the properties of the spin dependent one body density in momentum space for odd--A polarized deformed nuclei within the mean field approximation. We derive analytic expressions connecting intrinsic and laboratory momentum distributions. The latter are related to observable transition densities in {\bf p}--space that can be probed in one nucleon knock--out reactions from polarized targets. It is shown that most of the information contained in the intrinsic spin dependent momentum distribution is lost when the nucleus is not polarized. Results are presented and discussed for two prolate nuclei, 21^{21}Ne and 25^{25}Mg, and for one oblate nucleus, 37^{37}Ar. The effects of deformation are highlighted by comparison to the case of odd--A nuclei in the spherical model.Comment: Latex 2.09. 25 pages and 6 figures (available from [email protected]), to appear in Ann. of Phy

    Absence of a Finite-Temperature Melting Transition in the Classical Two-Dimensional One-Component Plasma

    Full text link
    Vortices in thin-film superconductors are often modelled as a system of particles interacting via a repulsive logarithmic potential. Arguments are presented to show that the hypothetical (Abrikosov) crystalline state for such particles is unstable at any finite temperature against proliferation of screened disclinations. The correlation length of crystalline order is predicted to grow as 1/T\sqrt{1/T} as the temperature TT is reduced to zero, in excellent agreement with our simulations of this two-dimensional system.Comment: 3 figure

    A Study of Two-Temperature Non-Equilibrium Ising Models: Critical Behavior and Universality

    Full text link
    We study a class of 2D non-equilibrium Ising models based on competing dynamics induced by contact with heat-baths at two different temperatures. We make a comparative study of the non-equilibrium versions of Metropolis, heat bath/Glauber and Swendsen-Wang dynamics and focus on their critical behavior in order to understand their universality classes. We present strong evidence that some of these dynamics have the same critical exponents and belong to the same universality class as the equilibrium 2D Ising model. We show that the bond version of the Swendsen-Wang update algorithm can be mapped into an equilibrium model at an effective temperature.Comment: 12 pages of LaTeX plus 18 pages of postscript figures in a uuencoded file (608k

    A radio and infrared exploration of the Cygnus X-3 environments

    Full text link
    To confirm, or rule out, the possible hot spot nature of two previously detected radio sources in the vicinity of the Cygnus X-3 microquasar. We present the results of a radio and near infrared exploration of the several arc-minute field around the well known galactic relativistic jet source Cygnus X-3 using the Very Large Array and the Calar Alto 3.5~m telescope. The data this paper is based on do not presently support the hot spot hypothesis. Instead, our new observations suggest that these sources are most likely background or foreground objects. Actually, none of them appears to be even barely extended as would be expected if they were part of a bow shock structure. Our near infrared observations also include a search for extended emission in the Bracket Îł\gamma (2.166 ÎĽ\mum) and H2H_{2} (2.122 ÎĽ\mum) lines as possible tracers of shocked gas in the Cygnus X-3 surroundings. The results were similarly negative and the corresponding upper limits are reported.Comment: Accepted for publication in A&A; 5 pages, 4 figure

    An Electrochemical Outlook on Tamoxifen Biotransformation: Current and Future Prospects

    Get PDF
    Tamoxifen is a nonsteroidal antiestrogen that is currently and widely used in the treatment of breast cancer in all of its stages, in adjuvant therapy as a long-term suppressant of tumor recurrence and also as a chemopreventive agent in women that are in high risk of developing this type of estrogen-dependent cancer. From a toxicological and (bio)analytical point of view the knowledge of the metabolic pathways of a drug is found to be extremely important. So, in the present work the most important tamoxifen biotransformation steps were reviewed in the light of recent pharmacological data. This overview also includes the current controversy concerning tamoxifen DNA-damaging (genotoxic) versus non-genotoxic mechanisms. A special focus will be given to the putative application of electrochemical methods as a modern and reliable analytical tool for determination of tamoxifen and its metabolites. Moreover, the potential of DNA electrochemical sensors for detection of structural damage to DNA as a basis for toxicity screening is highlighted. Future prospects looking for the importance of developing new analytical methodologies are also discussed.info:eu-repo/semantics/publishedVersio

    Reentrant Behavior of the Spinodal Curve in a Nonequilibrium Ferromagnet

    Full text link
    The metastable behavior of a kinetic Ising--like ferromagnetic model system in which a generic type of microscopic disorder induces nonequilibrium steady states is studied by computer simulation and a mean--field approach. We pay attention, in particular, to the spinodal curve or intrinsic coercive field that separates the metastable region from the unstable one. We find that, under strong nonequilibrium conditions, this exhibits reentrant behavior as a function of temperature. That is, metastability does not happen in this regime for both low and high temperatures, but instead emerges for intermediate temperature, as a consequence of the non-linear interplay between thermal and nonequilibrium fluctuations. We argue that this behavior, which is in contrast with equilibrium phenomenology and could occur in actual impure specimens, might be related to the presence of an effective multiplicative noise in the system.Comment: 7 pages, 4 figures; Final version to appear in Phys. Rev. E; Section V has been revise

    Complete Solution of the Kinetics in a Far-from-equilibrium Ising Chain

    Full text link
    The one-dimensional Ising model is easily generalized to a \textit{genuinely nonequilibrium} system by coupling alternating spins to two thermal baths at different temperatures. Here, we investigate the full time dependence of this system. In particular, we obtain the evolution of the magnetisation, starting with arbitrary initial conditions. For slightly less general initial conditions, we compute the time dependence of all correlation functions, and so, the probability distribution. Novel properties, such as oscillatory decays into the steady state, are presented. Finally, we comment on the relationship to a reaction-diffusion model with pair annihilation and creation.Comment: Submitted to J. Phys. A (Letter to the editor
    • …
    corecore